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Abstract

This paper proposes a Bayesian approach for the estimation of large conditional pre-

cision matrices instead of inverting conditional covariance matrices estimated using, for

example, the dynamic conditional correlations (DCC) approach. By adopting a Wishart

distribution and horseshoe priors within a DCC–GARCH(1,1) model, our method imposes

sparsity and circumvents the inversion of conditional covariance matrices. We also employ

a nonparanormal method with rank transformation to allow for conditional dependence

without estimating transformation functions to achieve Gaussianity. Monte Carlo simu-

lations show that our approach is effective at estimating the conditional precision matrix,

particularly when the number of variables (N) exceeds the number of observations (T ).

We investigate the utility of our proposed approach with two real-world applications.

First, to study conditional partial correlations among international stock price indices.

Second, to test for α in the context of CAPM and Fama-French 5 factor models with a

conditional precision matrix-based Wald-type test. The results indicate stable conditional

partial correlations through market disruptions. When there are market disruptions, blue

chip stocks chosen from S&P 500 daily returns provide statistically significant evidence

against the CAPM and Fama-French five models.
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1 Introduction

Volatility modeling plays an important role in financial econometrics. Early research focused

on univariate volatility models, such as autoregressive conditional heteroskedasticity (ARCH,

Engle 1982) and generalized ARCH (GARCH) proposed by Bollerslev (1986). More recently,

with increasing interconnection in financial markets and the advent of high-frequency, high-

dimensional data have necessitated the transition toward multivariate volatility models. These

models capture the dynamic correlations and covariances among multiple assets, providing a

more suitable framework for portfolio selection and optimization (Ledoit and Wolf, 2003, 2017),

testing capital asset pricing models (Sentana, 2009), and risk management strategies (Fan,

Zhang, and Yu, 2012). However, the estimation of covariance matrices in this multivariate

context is subject to the curse of dimensionality, where the number of parameters can exceed

the number of available time series observations.

To address the challenges associated with the estimation of covariance matrices in high-

dimensional contexts, a large body of literature that focuses on improving the estimation of large

covariance matrices through shrinkage and regularization methods (Ledoit and Wolf, 2004a,b)

has emerged. These techniques, which began with linear shrinkage and have since incorporated

nonlinear variants (Ledoit and Wolf, 2012, 2017, 2020, 2022; Engle, Ledoit, and Wolf, 2019;

Nard, Engle, Ledoit, and Wolf, 2022), have proved important for error minimization and port-

folio optimization. Researchers have also extended these methods to dynamic models, such as

the DCC with a linear (DCC–L) and nonlinear (DCC–NL) shrinkage framework (Engle, Ledoit,

and Wolf, 2019; Pakel, Shephard, Sheppard, and Engle, 2021), and embraced sparsity-promoting

approaches like banding and thresholding (Bickel and Levina, 2008; Rothman, Levina, and Zhu,

2009; Cai and Liu, 2011; Bailey, Pesaran, and Smith, 2019). Fan, Liao, and Mincheva (2013)

further assert the effectiveness of regularization for precision matrix estimation under certain

factor structures with consistent convergence rates. Additionally, dynamic covariance models

(DCMs) that leverage kernel smoothing have been introduced (Chen and Leng, 2016) along-

side semiparametric extensions for high-dimensional settings (Chen, Li, and Linton, 2019).

Poignard and Asai (2023) explored high-dimensional variance-covariance modeling within the

multivariate stochastic volatility (MSV) framework using a penalized OLS framework without

relying on Monte Carlo Markov Chain (MCMC) by introducing a vector autoregressive and

moving-average (VARMA) representation for MSV.

This paper studies the estimation of conditional precision matrices in high-dimensional set-

tings within the DCC framework, essential for financial applications that require estimation of

the inverse of the covariance matrix1. In carrying out this research, we face two difficulties.

1To clarify, we differentiate between two types of matrices: those that are static and those that are dynamic.
For simplicity, we will call the dynamic ones ‘conditional matrices’ and the static ones ‘unconditional matrices.’
This distinction is important because it reflects whether the matrix elements are fixed (without subscript t) or
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First, we cannot employ the conventional DCC framework by merely inverting its components

because it results in a matrix that is, at best, semi-positive definite. Furthermore, inverting the

unconditional component is ill-conditioned when the number of variables (N) is larger than the

number of time series observations (T ). Second, suppose we can extract conditional precision

matrices from the DCC framework. In that case, the resulting conditional partial correlations

derived from the conditional precision matrices only interpret conditional independence within

the restriction of a multivariate Gaussian distribution, an assumption which is rarely met in

finance and macroeconomic analyses. Moreover, even if we use the rank transformation to

convert the dataset to follow a Gaussian distribution, such as the Copula, quantile, and stan-

dard nonparanormal model, it does not retain the scale of the conditional precision matrices.

This scale distortion leads to an identification problem, where multiple precision matrices may

correspond to the same inverse correlation matrix. Accordingly, our focus is on exploring the

advantages of directly estimating precision matrices, particularly in addressing the identification

challenges, as opposed to relying on the inversion of estimated conditional covariance matrices.

We make two main contributions to the literature of high-dimensional multivariate volatility

modeling, namely the estimation of conditional precision matrices exploring the possibility of

conditional dependence. The first is the development of a Bayesian method for the estimation

of the conditional precision matrix within the high-dimensional DCC–multivariate GARCH

(MGARCH) framework instead of inverting the estimated conditional covariance matrix. We

use a Bayesian approach that samples from the Wishart distribution to bypass the challenges

of inverting semi-positive definite matrices. The estimation is carried out using the Metropolis-

Hastings within the Gibbs sampling algorithm. While DCC–MGARCH models perform well

for a moderate number of assets (typically fewer than 25), they struggle with larger datasets

due to the computational demands of estimating the unconditional precision matrix, Ω. For

a dataset with T time periods and N assets, using a sample covariance matrix necessitates

estimating N(N − 1)/2 parameters, which is prone to considerable error unless T ≫ N . To

address this problem, we estimate Ω using the Cholesky decomposition Ω = LL′, where L is

a lower triangular matrix. In the DCC framework, we apply a horseshoe prior to introduce

sparsity on Ω, as outlined in the approach by Neville, Ormerod, and Wand (2014). Addition-

ally, we incorporate block updates in our proposed distributions to achieve a balance between

computational efficiency and accuracy.

Our second contribution is to provide estimates of both conditional precision, Pt = (pij,t),

and partial correlation Ψt = (ψij,t) matrices aimed at achieving volatility interconnectedness

interpretation. We achieve this utilizing a Bayesian nonparanormal framework that applies a

rank transformation, converting non-Gaussian distributions to approximate Gaussian ones. The

standard nonparanormal estimation process approximates an unknown data distribution with

change over time (with subscript t).
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a Gaussian distribution by transforming original variables using a smooth, monotonic func-

tion, thus achieving a Gaussian approximation. In contrast, the rank transformation approach,

which we employ, simplifies this process. It bypasses the intensive computation required to

estimate transformation functions. Moreover, by providing the DCC-MGARCH structure, we

can identify Pt from the inverse correlation matrix St = (sij,t) given the conditional variances as

specified by the univariate GARCH procedures. Under Gaussian distributions, the relationship

between Pt and St can be established using the diagonal elements of the conditional covari-

ance matrices: pij,t = sij,t
√
(1/σii,t)(1/σjj,t), where σii,t is the conditional variance modeled on

a univariate GARCH process for security i (Rue and Held, 2005, p.26). Thus, with precise

estimation of univariate GARCH processes for each security variable and a Gaussian approxi-

mation, we obtain conditional precision matrices suitable for the DCC-MGARCH model. This

method circumvents the inversion of the entire conditional covariance matrices, a step often

required under conventional DCC approaches.

Nonparanormal model, nonparanormal estimation was introduced as a semiparametric ex-

tension of Gaussian graphical models with the capability to capture non-Gaussian marginal dis-

tributions through smooth, monotonic transformations (Liu, Lafferty, and Wasserman, 2009).

Subsequent developments in this line of inquiry have addressed high-dimensional settings in the

Bayesian nonparanormal graphical model (Mulgrave and Ghosal, 2020, 2022, 2023). Therefore,

our paper can add to the literature on high-dimensional multivariate volatility, introducing a

Bayesian nonparanormal approach to approximate unknown distributions to normality and de-

velop rank likelihood for constructing sparse precision matrices. This approach synergizes with

the DCC framework, which comprises a univariate GARCH process for volatility prediction and

a correlation estimation based on standardized residuals.

We conduct a number of Monte Carlo (MC) simulations to evaluate the performance of

the Bayesian nonparanormal conditional estimator and compared it with existing methods for

estimating conditional precision matrices from the literature. Our study involves two simu-

lation designs: the first design generates conditional precision matrices with a narrow range

of eigenvalues, suggesting numerical stability, while the second design produces matrices with

widely varying eigenvalues, typically pointing to numerical instability. In the first simulation

design, our Bayesian estimator outperforms DCC-L, DCC-NL, Gaussian, and t-Copula models

(Patton, 2009) in estimating conditional precision matrices for 20 different sample size com-

binations, T ∈ {50, 100, 150, 200, 250} and N = {25, 50, 100, 125}, in terms of spectral and

Frobenius norms. Although the extent of this outperformance, measured by the ratio of norm

loss averages (RNLA), diminishes as sample size, T , and the number of variables, N , increase,

our methods show improved performance over DCC-L and DCC-NL in estimating conditional

correlation matrices when sample size and the number of variables increase, but not against

Gaussian and t-Copula models. In the second MC design, all considered estimators, including
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our own, struggle with estimating conditional precision matrices due to instability in the eigen-

value distribution. However, for inverse correlation matrices, our method slightly outperforms

DCC-N and DCC-NL as N and T increase, and outperforms both the Gaussian and t-Copula

methods. As in the first design, this advantage diminishes with larger T values compared to

the Gaussian and t-Copula for all sample size combinations.

We employ our proposed method in two empirical applications: daily foreign stock price

indices and returns on blue chip stocks selected based on the market capitalization from the

Standard and Poor (S&P) 500 in the U.S. equity market. In analyzing foreign stock indices

over the period January 4, 1991, to August 31, 2023, we focus on deciphering their complex in-

terdependencies through conditional partial correlations. We evaluate conditional correlations

to understand how pairs of variables are linked under financial market disruptions. However,

conditional partial correlations are crucial for deeper insights into international market dy-

namics. They isolate specific relationships by excluding global and region-specific influences,

clarifying interactions between specific pairs of individual stocks or sectors. It is also important

in conditional covariance analysis of these indices, as it separates direct variable relationships

from the myriad of influencing local and global factors, thereby offering a different viewpoint

in understanding the variables’ interactions. We find that the range of the conditional partial

correlations is narrower than the associated conditional correlations. Furthermore, the overall

average of the pair-wise relations is smaller than the conditional correlations. Under financial

market disruptions, the relationship of the indices exhibits weakened mean values and reduced

variances, denoting a more stable behavior even under stressful market conditions.

When examining selected securities based on the market capitalization in S&P 500 over

the period September 2, 2016, to July 31, 2023, we test asset pricing theory where, in an

ideal, frictionless market, a financial asset’s excess return is determined by the product of its

factor loadings and the excess returns of corresponding risk factors, plus a random component.

Testing the theory involves estimating precision matrices used in Wald-type statistical tests

for evaluating asset pricing models. We assess the robustness of our method by applying it

to various test statistics in the context of the consumption asset pricing model (CAPM) and

Fama-French 5 factor model over different time frames, including periods of market turmoil,

and by comparing it with the Ĵα test by Pesaran and Yamagata (2023), which does not involve

the precision matrix. Using our proposed conditional precision matrices, we find that the Wald

statistic rejects H0 : α = 0, mainly during periods of major market disruptions, COVID-19,

and FED’s inflation containment rate hikes periods. All test statistics show similar results for

the market disruption periods except for COVID-19.

Our paper adds to the literature on the Copula model and nonparanormal estimation. In the

context of the Copula model, its application has become recognized as a versatile framework for

capturing a diverse range of dependency structures, encompassing both linear and tail depen-
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dencies (Patton, 2009; Aas, Czado, Frigessi, and Bakken, 2009; Anatolyev and Pyrlik, 2022).

Subsequent advancements in the domain have yielded specific models such as the pair copula

constructions (PCC) (Müller and Czado, 2019a), vine copulas (Müller and Czado, 2019b), and

Gaussian copula graphical models (GCGM) (Pitt, Chan, and Kohn, 2006; Dobra and Lenkoski,

2011; Liu, Han, Yuan, Lafferty, and Wasserman, 2012; Mohammadi, Abegaz, Heuvel, and Wit,

2017). These specialized models facilitate the scrutiny of ultra-high-dimensional data with

complex interdependencies. Furthermore, the utility of copula methods has been expanded to

accommodate dynamic dependencies through the incorporation of DCC frameworks (Kim and

Jung, 2016; Oh and Patton, 2016, 2017, 2023). However, despite their versatility, copula models

often presuppose rigid functional forms for dependencies, which may misalign with empirical

phenomena.

The rest of the paper is organized as follows: Section 2 presents the econometric framework.

In Section 2.1, we set out the dynamic conditional framework, while in Section 2.2, we discuss

the process of rank transformation and the rank-likelihood in a Bayesian framework. Section

2.3 describes how we implement Gibbs sampling to estimate a sparse, unconditional precision

matrix. Section 3 describes the estimation of the Bayesian nonparanormal dynamic conditional

partial correlation alongside a GARCH(1,1) model. Section 3.1 addresses the Bayesian esti-

mation procedure for the GARCH(1,1) model, while Section 3.2 outlines a specific algorithm

for computing the posterior distribution. Section 4 details the MC simulation designs and pro-

vides a summary of the main findings for the proposed Bayesian estimators. In Section 5, we

apply our estimation framework to two sets of empirical data: daily foreign stock price indices

(presented in Section 5.1) and daily returns on securities selected from S&P 500 (presented

in Section 5.2). Section 6 summarizes the research and its implications. Supplementary ma-

terial, including technical specifics and additional empirical visualizations, is presented in the

appendix.

2 Bayesian Nonparanormal Dynamic Conditional Model

2.1 Dynamic conditional framework

Let yit be the return of financial security i at time t, comprised of the rate of price change plus

dividends if applicable. Define yt = (y1t, y2t, . . . , yNt)
′ as the vector of returns for N securities

at time t, and Ft as the information set available up to time t for t = 1, 2, . . . , T . The return

process is modeled as follows:

yt = µt +Σ
1/2
t ϵt, for t = 1, . . . , T, (2.1)
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where µt = E(yt|Ft−1) = (µ1t, µ2t, . . . , µNt) is the conditional mean vector, andΣt = {σij,t}Ni,j=1 =

Cov (yt|Ft−1) represents the N ×N positive-definite conditional covariance matrix. The error

vectors ϵt are assumed to be i.i.d. with E(ϵt|Ft−1) = 0 and E(ϵtϵ′t|Ft−1) = IN , where IN is the

identity matrix of order N .

Following the literature, Σt is expressed as

Σt = D
1/2
t RtD

1/2
t , (2.2)

where D
1/2
t = diag{Σ1/2

t } = diag{σ1/2
11,t, . . . , σ

1/2
NN,t} contains the conditional standard deviations,

Rt = S−1
t , and St is the conditional inverse correlation matrix. Conditional variances, σii,t, is

assumed to follow GARCH(1,1) processes:

σii,t = ai + θ0ir
2
i,t−1 + θ1iσii,t−1, (2.3)

with parameters (ai, θ0i, θ1i), where ai > 0, θ0i ≥ 0, θ1i ≥ 0, θ0i + θ1i < 1 for i = 1, . . . , N , and

rit = yit − µt.
2

Remark 1. The GARCH(1,1) specification in (2.3), requires positive parameters to ensure pos-

itive conditional variance and incorporates short memory and symmetric volatility reactions.

We address the model’s tendency towards skewness and heavy tails in the error distribution

through a Bayesian estimation approach, utilizing a multivariate t-distribution with ν degrees

of freedom as suggested by Fioruci, Ehlers, and Andrade Filho (2014). While aware of al-

ternative GARCH variants such as exponential GARCH (EGARCH; Nelson 1991), quadratic

GARCH (QGARCH; Sentana 1995), threshold GARCH (Chen and So, 2006; Chen, Liu, and So,

2008), and fractionally integrated GARCH (FIGARCH; Baillie, Bollerslev, and Mikkelsen 1996)

that might mitigate the GARCH(1,1) model’s limitations, our methodological choice remains

justified by our primary analytical focus.

Our primary focus is on estimating the conditional precision matrices, Pt, and the con-

ditional inverse correlation matrices, St, instead of deriving the conditional covariance and

conditional correlation, Rt = S−1
t , matrices from Ψt. The conditional partial correlation ma-

trix, Ψt is also of special interest as they provide a model of appropriate measure of pair-wise

conditional dependence, which is derived as ψij,t = −sij,t, i ̸= j. Contrary to the conventional

application of the DCC procedure to the conditional covariance matrix, applying the procedure

to the conditional precision matrix has the added advantage of bypassing the inversion of the

estimated inverse conditional covariance matrix, thereby facilitating portfolio optimization and

the validation of asset pricing theory.

2The restriction ai > 0 is required for our analysis due to the use of Bayesian GARCH(1,1) estimation,
where ai is sampled from a normal distribution in our estimation process. This contrasts with the standard
GARCH(1,1) process, where the restriction is unnecessary owing to the steady-state condition, ai = σi0(1 −
θ0i − θ1i), where σi0 is the long-term variance.
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The standard DCC–MGARCH model (Engle, 2002), as specified in Equations (2.1)–(2.3)

using S−1
t = Rt is defined as

Rt = diag{Qt}−1/2Qtdiag{Qt}−1/2,

where Qt is an N ×N symmetric positive-definite matrices defined by,

Qt = (1− a− b)Σ+ aut−1u
′
t−1 + bQt−1, (2.4)

ut = D−1
t (yt − µt), Σ is the unconditional covariance matrix of ut, a > 0, b > 0 and a +

b < 1. However, applying this framework to the precision matrix leads to complications,

as the matrix ut−1u
′
t−1 is at most semi-positive definite and thus non-invertible. A varying

correlation MGARCH (VC–MGARCH) model (Tse and Tsui, 2002) circumvents this issue by

estimating conditional correlations, substituting ut−1u
′
t−1 with the sample correlation matrix

over (ut−1, . . . ,ut−M), where M ≥ N . Similarly, the dynamic correlation MSV (DC–MSV)

model (Asai and McAleer, 2009) employs a Wishart process as an alternative to ut−1u
′
t−1 while

maintaining the standard model’s conditional covariance matrices.

Billio, Caporin, and Gobbo (2003) propose a block-diagonal structure to restrict the dynamic

to be equal only among groups of variables. As an extension, the clustered correlation MGARCH

model (CC-MGARCH) proposed by So and Yip (2012) integrates these group-specific effects

into the estimation of the direct conditional correlation matrix, where a Bayesian model selec-

tion selects the cluster. Although this adjustment increases the model’s flexibility to capture

various dependencies, it also significantly increases the number of unknown parameters when

combined with the conditional variance structure outlined in Equation (2.3). Such complexity

present new challenges for estimation methodologies and complicates interpretations, particu-

larly for large-dimensional datasets. In these large-dimensional cases, Engle, Ledoit, and Wolf

(2019) and De Nard, Ledoit, and Wolf (2021) follow the same framework as presented in (2.4)

incorporating regularization techniques only for estimation of unconditional covariance matrix

Σ using shrinkage methods.

In our approach, we consider directly the conditional inverse correlation matrix, St = {sij,t},
in (2.2), and set

St = diag{Pt}−1/2Ptdiag{Pt}−1/2, (2.5)

where Pt represents N ×N symmetric positive-definite conditional precision matrices given by

Pt = (1− a− b)Ω+ aΞt−1 + bPt−1, (2.6)

with the corresponding parameters a > 0, b > 0 and a+b < 1. As noted above, we estimate the

conditional precision matrix by using the precision matrix of the lagged residual, Ξt−1, to avoid
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the issue of non-invertibility. Furthermore, we incorporate a shrinkage prior in the sampling

process of the unconditional precision matrix, Ω.

To obtain Ω, we begin with the transformation of raw devolatilized residuals, ut = D−1
t (yt−

µt), aiming to approximate a multivariate Gaussian distribution. This transformation, facili-

tated by the Nonparanormal rank transformation detailed in Section 2.2 below, converts the raw

devolatilized residual matrixU = (u1,u2, . . . ,uT )
′ into a rank transformed devolatilized residual

matrix Z = (z1, z2, . . . , zT )
′ following the multivariate normal distribution with 0 mean and the

correlation matrixC which has an inverse correlation matrixC−1 = diag{Ω}−1/2Ωdiag{Ω}−1/2.

The objective of this transformation is to achieve approximated Gaussian standardized residu-

als, thereby imbuing the resultant partial correlation matrices with meaningful interpretability

concerning conditional dependence—one of the focal points of our exploration into volatility

dependence in this paper. Then, the unconditional precision matrix, Ω, is sampled from the

posterior distribution regularized with horseshoe priors using Gibbs sampling, as elaborated in

Section 2.3 below.

We obtain the lagged residual precision matrix Ξt−1, in (2.6) by drawing samples from a

conjugate posterior distribution following a Wishart distribution:

Ξt−1 ∼ W
(
T + 3, (IN + zt−1z

′
t−1)

−1
)
, (2.7)

where T+3 is the degrees of freedom, and (IN+zt−1z
′
t−1)

−1 is the scale matrix. This distribution

is particularly suited for our purposes as it ensures that the sampled precision matrices are sym-

metric and positive-definite. The conjugacy with the approximated normal distribution of zt,

as made possible by the nonparanormal transformation, permits closed-form expressions for the

posterior. The Wishart distribution, a probability distribution over symmetric positive-definite

matrices, inherently captures the structure and dependencies in the data. We, therefore, sample

the conditional precision matrix for the conditional covariance structure of the rank-transformed

residuals, zt−1. This matrix reflects the dynamic volatility and interrelationships among zt−1

variables. The inclusion of IN in the scale matrix in (2.7) ensures its positive definiteness and

invertibility, serving as regularization to prevent overfitting by limiting excessive adaptation to

recent observations. It also establishes a baseline assumption of independent variables with unit

variance.

Building upon this framework, we can define the conditional partial correlation matrix

Ψt = {ψij,t}Ni,j=1, which is closely linked to St, by setting ψij,t as follows:

ψij,t =

−sij,t/
√
sii,tsjj,t, for i ̸= j

1 for i = j
. (2.8)

Through the application of the nonparanormal rank transformation, one can interpret the el-
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ements of Ψt as indicators of conditional dependence. This transformation assures the adapt-

ability of the standard Gaussian-based interpretation of partial correlations to our framework,

hence allowing the inference of conditional dependence from the observed data.

Remark 2. If the devolatilized residuals do not follow a multivariate normal distribution, the

partial correlations cannot be straightforwardly interpreted as measures of conditional depen-

dence due to the potential nonlinearity and skewness in the relationships between variables. The

Gaussian assumption ensures that the partial correlations describe linear relationships and that

the measure of zero partial correlation corresponds to conditional dependence. In the absence

of multivariate normality, reliance on partial correlations for such interpretations necessitates

prudence. Alternative analytical strategies, such as the employment of copula models or the

adoption of nonparametric measures like distance correlation and mutual information, may be

necessary to attain robust inference.

2.2 Bayesian rank transformation and likelihood

To infer the unconditional precision matrix Ω, we transform the raw devolatilized residuals

U = (u1,u2, . . . ,uT )
′ = (U1,U2, . . . ,UN) into the rank transformed devolatilized residuals

Z = (z1, z2, . . . , zT )
′ = (Z1,Z2, . . . ,ZN) ∼ N (0,C), where C = S−1. We delineate the set

B = {Z ∈ RT×N : ui,tr−1 < ui,tr < ui,tr+1}, given the monotone and increasing transformation

functions gi, such that i = 1, 2, . . . , N , and t = 1, 2, . . . , T with a rank of the observations

r = 2, 3, . . . , T − 1. The rank-transformed residuals Z are restricted to reside within this set.

Utilizing Gibbs sampling as described in Algorithm 2, Appendix A, we can obtain Z.

The rank-likelihood LRL(Z) is then given by

LRL (Z) = Pr(Z ∈ B|C, g1, g2 . . . , gN) =
∫
B
p (Z|C) dZ = Pr(Z ∈ B|C), (2.9)

where g1, g2 . . . , gN are transformation functions. This likelihood is exclusively contingent on

C and is devoid of dependency on specific transformation functions (Hoff, 2007).

Example 1. (Hoff, 2007) Suppose we are interested in estimating the parameter θ but there is

also a nuisance parameter g that we are not interested in. We find a statistic z = t(u) which

is a function of our observed data u, where the distribution of t(u) depends only on θ and is

independent of the nuisance parameter g. Then, we can have the relationship as follows:

p (u|θ, g) = p (t(u), u|θ, g) = p (t(u)|θ) · p (u|t(u), θ, g) .

This expression implies that the probability distribution of observed data u, given both θ and g,

can be decomposed as the distribution of the statistic t(u) and the distribution of u, given t(u),
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θ, and g. Since t(u) is independent of g, we can focus on p(t(u)|θ) for estimating θ, ignoring

the nuisance parameter g in the estimation process.

To achieve (2.9), we can rewrite Z as (Z1,Z2, . . . ,ZN) = (g1(U1), g2(U2), . . . , gN(UN)) ∼
N (0,C). Then, since Z ∈ B occurs whenever U is observed, the raw devolatilized residuals

likelihood of U is

p(U|C, g1, g2, . . . , gN) = p (Z ∈ B,U|C, g1, g2, . . . , gN)

= Pr(Z ∈ B|C) · p(U|Z ∈ B,C, g1, g2, . . . , gN).

Therefore, Pr(Z ∈ B|C) alone can be used to estimate C, as it is dependent only on the

parameter of interest, C, rather than the transformation functions, g1, g2, . . . , gN . Then, using

the reparameterization in terms of the non-identifiable Ω, but focusing on the identifiable

unconditional inverse correlation matrix, S, we can derive the posterior distribution

Pr(S|Z ∈ B) ∝ p(S)p(Z ∈ B|S). (2.10)

This rank-based nonparanormal approach deviates from both the Copula and the standard

nonparanormal frameworks by simplifying the overall modeling process. The Copula model

mandates a two-step transformations. Initially, Ui, for i = 1, 2, . . . , N are transformed into the

uniform margins Ũi via their respective empirical cumulative distribution functions (CDFs),

Ũi = Fi(Ui) ∼ U(0, 1) for i = 1, . . . , N . Subsequently, these uniform variables are converted

back to standard normal margins by employing the inverse standard normal CDF, Φ−1, denoted

as Zi = Φ−1(Ũi). The joint likelihood L
CP(Z) in the Gaussian copula model is then constructed

as the product of individual marginal likelihoods and the copula density, represented as

LCP (Z) =
N∏
i=1

f (Zi) · c (Z;C) , (2.11)

where f(Zi) is the marginal density of Zi, c(Z;C) denotes the copula density, and C is the

correlation matrix capturing the dependencies among the Zi’s. The likelihood function in this

approach decomposes into marginal and copula components. On the other hand, the standard

nonparanormal model extends the Copula model’s approach of formulating likelihood by intro-

ducing smooth, invertible functions to transform the original variables before the copula trans-

formation, leading to a likelihood formulation that also involves these transformation functions

gi, resulting in transformed observations gi(uit). The core premise of the standard nonpara-

normal framework is that these transformed variables approximate a multivariate Gaussian

distribution, obviating the need for additional transformations to uniform or standard normal

margins. Under this Gaussian assumption, the joint likelihood LNP(Z) for the transformed
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dataset Z, where zit = gi(uit), is formulated as

LNP (Z) =
N∏
i=1

T∏
t=1

f (zit) · |J(gi(uit))| , (2.12)

where f(zit) denotes the Gaussian density function for the transformed variables zit and |J(gi(uit))|
is the Jacobian determinant of the transformation gi at uit. This likelihood construction di-

rectly models the dependencies among variables and across time, capitalizing on the Gaussian

approximation.

The rank-based nonparanormal model serves as an intermediary between the Copula and

traditional nonparanormal frameworks. It avoids the Copula model’s requisite partitioning

of marginal and Copula components, thereby streamlining the likelihood formulation. Simul-

taneously, it circumvents the standard nonparanormal model’s need for estimating smooth

transformation functions gi, thereby reducing model complexity. In short, this approach amal-

gamates the respective merits of both models while attenuating their individual complexities

and assumptions.

We consider a new approach by integrating the DCC framework with the rank-based non-

paranormal model, as proposed by Mulgrave and Ghosal (2023). We tackle the issue of non-

identification in the rank-likelihood approach to derive the identifiable conditional precision

matrix Pt = (pij,t). This involves reparameterizing the model to use the non-identifiable Ω,

and computing the non-identified conditional precision matrix P̃t using Equation (2.6). We,

then, focus on posterior inference for the identifiable conditional inverse correlation matrix

St = (sij,t), defined as St = diag{P̃t}−1/2P̃tdiag{P̃t}−1/2. Since the rank-likelihood is unaf-

fected by scale transformations, both non-identifiable and identifiable models produce the same

posterior distributions, as indicated in Equation (2.10). This allows us to sample from the pos-

terior distribution of St without the need to estimate transformation functions. Given St, we

can obtain the conditional variance σii,t by employing a GARCH(1,1) process for each security.

Therefore, we can find the identifiable conditional precision matrix Pt, where

pij,t = sij,t

√
(1/σii,t)(1/σjj,t) (2.13)

under the Gaussian distribution (Rue and Held, 2005, p.26).

2.3 Using Gibbs sampling to obtain the unconditional precision matrix

We obtain the unconditional precision matrix Ω by sampling the Cholesky decomposition Ω =

LL′, where L is a lower triangular matrix. The lower triangular elements of Ω are defined as

Ωij =
∑j

k=1 LikLjk for j = 1, 2, . . . , N and i = j + 1, j + 2, . . . , N . The elements of L are

determined such that:

11



Lij =


√

Ωii −
∑i−1

k=1 L
2
ik, if i = j,

1
Ljj

(
Ωij −

∑j−1
k=1 LikLjk

)
, if i > j,

0, if i < j.

Then, the density of Z ∼ N (0,Σ) is

p(Z) = (2π)−
N
2 |Ω|

1
2 exp

(
−1

2
Z′ΩZ

)
and the conditional distribution of Zj given Zi>j is Gaussian, with the mean and variance

derived from the elements of L: for j = 1, 2, . . . , N ,

Zj|Zi>j ∼ N

(
j−1∑
i=1

−Lij

Ljj

Zi,
1

L2
jj

)
,

where −Lij/Ljj represents the regression coefficient of Zj on Zi, and 1/L2
jj is the conditional

variance. Therefore, we can represent the Cholesky decomposition with the regression coeffi-

cient,

Ωij =

j∑
k=1

LikLjk =

j∑
k=1

βikβjkωk, (2.14)

where βij = −Lij/Ljj represents the regression coefficients, and ωj = 1/σ2
j = L2

jj denotes the

precision of the multivariate Gaussian distribution. Using (2.14), we can formulate the regres-

sion problem (Rue and Held, 2005, p. 35). By employing the rank transformed devolatilized

residuals Z ∼ N (0,Σ), where Σ is the unconditional covariance matrix, we can have

Zj =
∑
i>j

βijZi + ηj, ηj ∼ N
(
0, ω−1

j

)
(2.15)

for j = 1, 2, . . . , N and i = j + 1, j + 2, . . . , N . This formulation ensures the properties of

symmetry and positive definiteness in the precision matrix. Based on Equation (2.15), the

likelihood function takes the form

Zj|Zi>j,βi>j, σ
2
j ∼ N

(
Zi>jβi>j, σ

2
j I
)
, (2.16)

where Zi>j refers to the matrix constructed by the columns of Z greater than j, and βi>j =

(βj+1,j, βj+2,j, . . . , βN,j).

In this regression model, there is an intrinsic sequence to the variables. To accommodate

an order between variables, we impose a sparsity constraint on the rows of the lower triangular

matrix, following the approach outlined by Mulgrave and Ghosal (2022). This method ensures

12



that the likelihood of non-zero elements remains uniform across rows, dictated by the ratio
c

N
√
i
, where c is an tuning parameter.3 In this paper, we set c = 0.1 for all analyses to adapt to

the high-dimension settings in the multivariate volatility model, thereby reducing the number

of nonzero elements in each row of the unconditional precision matrix. For the regression

coefficients βij, we employ a horseshoe prior, as delineated in Neville, Ormerod, and Wand

(2014), with the global scale parameter λ̃j approximating the probability of a nonzero element.

Characterized by its concentration around zero and tails resembling a Cauchy distribution, the

horseshoe prior offers robust variable selection and the ability to capture extreme values. This

selection stands in contrast to other commonly used priors such as the Gaussian and Laplace

priors, which are limited by their lighter tails and less effective variable selection capabilities.

The spike-and-slab prior, while designed to induce sparsity (Li and McCormick, 2019; Mulgrave

and Ghosal, 2020) can be computationally demanding and less apt at modeling heavy-tailed

features. The G-Wishart prior (Mohammadi and Wit, 2015; Mohammadi, Abegaz, Heuvel, and

Wit, 2017), on the other hand, is tailored to capture structural sparsity in graph-based models

but may not be optimal for handling heavy-tailed features. Hence, the horseshoe prior provides

a balanced and effective choice for modeling the precision matrix’s sparsity and tail behavior of

the attributes that are frequently observed in financial data.

The combined application of sparsity constraints and carefully chosen priors induces a struc-

tured prior on Ω, subsequently influencing the prior on S. For a comprehensive exposition of the

sparsity mechanism, the reader references to Mulgrave and Ghosal (2022). The specific algo-

rithm employed for the implementation is elaborated is given by Algorithm 3, in the Appendix

A.

3 Bayesian nonparanormal dynamic conditional partial corre-

lation – GARCH model estimation

Section 3.1 details the Bayesian GARCH(1,1) model’s application within the DCC framework,

emphasizing conditional variance calculation and the use of skewed distributions for modeling

asymmetry and tail characteristics. Section 3.2 discusses the strategies for posterior computa-

tion, including optimization for initial parameters and an adaptive Metropolis-Hastings MCMC

approach to address the computational challenges in large-dimensional settings.

3The Cholesky L of the unconditional precision matrix Ω depends on the row index because Pr(Ωij ̸= 0) =

Pr(
∑N

k=1 likljk ̸= 0) = 1 − (1 − ρiρj)
min(i,j), where ρi is the probability of non-zero entry in the ith row of L.

Mulgrave and Ghosal (2022) set ρi = c/(N
√
i) to tune the sparsity constraint.
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3.1 Bayesian GARCH(1,1) estimation

The conditional likelihood function, corresponding to Equation (2.1), is given by

l (θ|Y) =
T∏
t=1

|Σt|−1/2 pϵ

(
P

−1/2
t yt

)
=

T∏
t=1

[
N∏
i=1

σ
−1/2
ii,t

] ∣∣S−1
t

∣∣−1/2
pϵ
[
(DtS

−1
t Dt)

−1/2yt

]
,

where pϵ represents the joint density function of ϵt, parameterized by {a1, θ10, θ11, . . . , aN , θN0,

θN1, a, b} in Equations (2.6) and (2.3). We adopt the multivariate skewed distributions char-

acterized by a shape parameter γi > 0, which quantifies the degree of asymmetry as proposed

by Bauwens and Laurent (2005):

pϵ (ϵt|γ) = 2N

(
N∏
i=1

γiσγi
1 + γ2i

)
Γ ((ν +N)/2)

Γ (ν/2) [π(ν − 2)]N/2

[
1 +

ϵ∗′t ϵ
∗
t

ν − 2

]− ν+N
2

, (3.1)

and

ϵ∗t =

(ϵtσγi + µγi)/γi if ϵt ≥ −µγi/σγi

(ϵtσγi + µγi)γi if ϵt < −µγi/σγi

,

where Γ(·) denotes the Gamma function, µγi and σ
2
γi
are defined by

µγi =
Γ((ν − 1)/2)

√
ν − 2(γ − 1/γ)√

πΓ(ν/2)
,

σ2
γi
= (γ2i + 1/γ2i )− µ2

γi
− 1,

and ν is the degree of freedom to (tail) parameter. This methodology decouples the influence

of skewness and tail characteristics while anchoring the mode at zero. The shape parameter,

γi, governs the distribution of mass on either side of the mode, whereas the tail parameter, ν,

modulates the distribution’s skewness. γi = 1 yields symmetric distributions, while γi > 1 and

γi < 1give right and left skewness, respectively. As ν → ∞, the distribution converges to a

standard multivariate normal distribution, as demonstrated by Fernández and Steel (1998).

For the GARCH(1,1) coefficients in Equation (2.3), we follow the prior distributions pro-
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posed by Ardia (2008), for i = 1, 2, . . . , N ,

ai ∼ N
(
µai , σ

2
ωi

)
I (ai > 0) ,

θ0i ∼ N
(
µθ0i , σ

2
θ0i

)
I (0 < θ0i < 1) ,

θ1i ∼ N
(
µθ1i , σ

2
θ1i

)
I (0 < θ1i < 1) ,

where I(A) denotes an indicator function with I(A) = 1 if A holds and zero otherwise. Analo-

gously, the priors for parameters a and b in Equation (2.6) are

a ∼ N
(
µa, σ

2
a

)
I (0 < a < 1) , b ∼ N

(
µb, σ

2
b

)
I (0 < b < 1) .

For the skewness and tail parameters γi and ν, the priors are specified as:

γi ∼ N
(
µγi , σ

2
γi

)
I (γi > 0) , ν ∼ N

(
µν , σ

2
ν

)
I (ν > 2) .

3.2 Posterior computation

We generate random samples of Pr(St|Z ∈ D) by employing the following steps. To efficiently

explore the parameter space, an optimization problem targeting the log-posterior distribution

is initially solved to acquire starting parameters. If the resultant Hessian matrix is not positive-

definite, an adaptive Metropolis-Hastings Markov Chain Monte Carlo (MH-MCMC) strategy is

employed to construct the proposal distribution. The proposal distribution is a key component

that suggests the next point in the parameter space to explore. We first run using an initial

proposal distribution, a simple Gaussian with a predetermined covariance matrix. The results

of this ‘pilot run’ are then used to update the proposal distribution in two ways: First, we

recalculate the covariance matrix of the proposal distribution to align with the empirical co-

variance of the sampled points, thereby better reflecting the shape and orientation of the target

distribution. In this step, we aim to adjust the acceptance rate between 15% and 50%. Second,

by adjusting the step size (scale) of the proposal distribution, which is achieved by multiplying

the empirical covariance with a parameter based on the acceptance rate. This adjustment aims

to optimize the rate at which new proposals are accepted to go within a range of 20% to 50%.

We implement an initial ‘pilot run’ for sample generation, followed by an adaptation phase

during which the proposed distribution is refined based on the empirical covariance matrix of

the observed samples. These adaptations made iteratively or after a set number of iterations,

are designed to improve the exploration of the parameter space, ensuring more efficient and ef-

fective convergence to the target distribution. The adapted proposal distribution and step-size

are then utilized in the main MCMC run, as detailed in Algorithm 1.

In large-dimensional settings where the number of variables exceeds 25, the computational
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Algorithm 1 Bayesian nonparanormal dynamic conditional partial correlation– GARCH(1,1)

1: for 1=1:#Simulation do
2: Choose initial parameter values Θ0 = a1, θ10, θ11, . . . , aN , θN0, θN1, a, b for the model
3: Compute Log-Rank Likelihood:
4: Compute raw devolatalized residuals U.
5: Compute rank transformed devolatalized residuals Z from Algorithm 2.
6: Sample regularized unconditional precision matrix Ω from Algorithm 3.
7: Given Σ1 and Q1 based on Ω at t = 1,
8: for t > 1 do
9: Sample Ξt ∼ W((I+ z′t−1zt−1)

−1, 3 + T ).
10: Update Pt: Pt = (1− a− b)Ω+ aΞt + bPt−1.
11: Compute St = Pt/

√
diag{Pt}diag{Pt}′.

12: Update diagonal elements of Σt as specified in (2.3).
13: Save the current St for later use.
14: Update log-rank likelihood based on the error distribution specified in (3.1).
15: end for
16: Compute log-posterior for St from the found log-rank likelihood and log priors for Θt as

specified in Section 3.1.
17: Compute log-posterior for Θt from the log-posterior for St and log-Jacobian for Θt.
18: Given log-posterior, generate a new parameter set by pertrubing the current parameter

set and decide whether to accept the new parameter set based on the Metropolis-Hastings
criterion.

19: end for
20: Compute the conditional partial correlation matrixΨt as Equation (2.8) and the conditional

precision matrix Pt from the acquired MH-MCMC samples of St.

burden of estimating more than 100 parameters becomes prohibitive. To ameliorate this, we

adopt an approach akin to that delineated in Pakel, Shephard, Sheppard, and Engle (2021).

Specifically, initial parameters are derived from optimizing univariate GARCH models for each

variable rather than through a joint fit under the log-posterior distribution. Subsequent analysis

focuses solely on parameters pertinent to conditional partial correlation matrices and associ-

ated error distributions. This strategy effectively minimizes the number of jointly estimated

parameters and the requisite pilot simulations for establishing a viable proposal distribution.

Nonetheless, adaptive phase introduces complexities stemming from the approximations in-

herent in the initial parameters. An alternative strategy for approximating the full posterior

distribution involves Bayesian variational inference. This avenue is not explored in the present

study because of the flexibility of the MCMC approach to resolve the model complexity. We

leave this for future research.
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4 Monte Carlo Experiments

In this section, we investigate the small sample performance by our proposed Bayesian non-

paranormal conditional estimator through Monte Carlo simulations. More specifically, our

objective is to empirically verify whether the estimation of the conditional precision and inverse

correlation matrices surpasses the approach of inverting estimated conditional covariance and

correlation matrices. Our approach is benchmarked against several shrinkage and Copula-based

estimators commonly integrated within the DCC model. In this regard, we consider the DCC-L

and DCC-NL estimators of Ledoit and Wolf (2004b); Pakel, Shephard, Sheppard, and Engle

(2021) and Engle, Ledoit, and Wolf (2019), respectively, as well as Patton (2009)’s Gaussian

Copula and t-Copula estimators. For each estimator, including our proposed approach, we fit

univariate GARCH(1,1) models to normalize the return series for each i = 1, . . . , N .

We begin by generating y
(r)
it , for r = 1, 2, . . . , R replications, as

y
(r)
it = µ

(r)
t + u

(r)
it , for i = 1, 2, . . . , N ; t = 1, 2, . . . , T,

where µ
(r)
t

i.i.d.∼ U(0.5, 1.5). The errors u
(r)
it are generated as

u
(r)
it =

√
h
(r)
it ε

(r)
it , for i = 1, 2, . . . , N ; t = −50,−49, . . . ,−1, 0, 1, . . . , T − 1, T,

where u
(r)
i,−50 =

√
h
(r)
i,−50ε

(r)
i,−50, and h

(r)
i,−50 = σ

2,(r)
i

i.i.d.∼ (1
2
+ χ2(2)

4
). We consider two different

distributions for ε
(r)
it following

ε
(r)
it

i.i.d.∼ N (0, 1), and ε
(r)
it

i.i.d.∼ scale · t(ν = 3),

where scale =
√

ν−2
ν

and ν is a degree-of-freedom. Define h
(r)
t and r

(r)
t as

h
(r)
t = (h

(r)
1t , h

(r)
2t , . . . , h

(r)
Nt)

′ and r
(r)
t = (r

(r)
1t , r

(r)
2t , . . . , r

(r)
Nt)

′ = y
(r)
t − µ(r)

t .

The conditional variance h
(r)
t are generated as:

h
(r)
t = W(r) +Θ

(r)
0 r

2,(r)
t−1 +Θ

(r)
1 h

(r)
t−1 > 0, (4.1)

where W(r) = (w
(r)
1 , w

(r)
2 , . . . , w

(r)
N )′, w

(r)
i = (1− θ

(r)
i0 − θ

(r)
i1 )σ

2,(r)
i , Θ

(r)
0 = diag{θ(r)10 , θ

(r)
20 , · · · , θ

(r)
N0}

and Θ
(r)
1 = diag{θ(r)11 , θ

(r)
21 , · · · , θ

(r)
N1}. The parameters are sampled from θ

(r)
i0

i.i.d.∼ U(0.1, 0.2),
θ
(r)
i1

i.i.d.∼ U(0.5, 0.75), and σ2,(r)
i

i.i.d.∼
(

1
2
+ χ2(2)

4

)
, respectively. y

(r)
t are generated as:

y
(r)
t = µ

(r)
t +

{
D

(r)
t

}1/2

L−1
S,tε

(r)
t ,
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where LS,t is a Cholesky factor of the conditional inverse correlation matrix

S
(r)
t = diag{P(r)

t }−1/2P
(r)
t diag{P(r)

t }−1/2,

and P
(r)
t denotes a conditional precision matrix generated by simulation designs A and B below.

We focus on the problem of estimating both the conditional precision matrix, Pt, and the

conditional inverse correlation matrix, St, for two particular cases of dense conditional precision

matrices.

Monte Carlo design A: We consider a conditional precision matrix P
(r)
t , which is structured

such that 20% of its eigenvalues are 1, 40% are 1/3, and the remaining 40% are 1/10. This

particular composition of the precision matrix is reflected in its associated covariance matrix

Σ
(r)
t , aligning with the eigenvalue distribution specified by Ledoit and Wolf (2012)—where

20% of the eigenvalues are 1, 40% are 3, and the remaining 40% are 10. For each time point

t = −50, . . . ,−1, 0, 1, . . . , T , we proceed by creating a dense lower triangular Cholesky factor

L
(r)
P,t of P

(r)
t , with off-diagonal elements L

(r)
ij,t

i.i.d.∼ N (0, 1) for i > j and L
(r)
ii,t

i.i.d.∼ N (0, 0.1) for i =

1, . . . , N . Subsequently, we generate a diagonal matrix of eigenvaluesΛ
(r)
t = diag{λ1tτ 1, λ2tτ 2, λ3tτ 3},

where τ 1 = 1⌈0.2N⌉ is a vector of ones with a length that comprises 20% of N , rounded up; τ 2 =

1⌈0.4N⌉ is a vector of ones representing 40% of N , also rounded up; and τ 3 = 1N−⌈0.2N⌉−⌈0.4N⌉ is

a vector of the remaining proportion of N . The eigenvalues are set at λ1t = 1, λ2t = 1/3, and

λ3t = 1/10. Finally, the conditional precision matrix P
(r)
t is constructed as

P
(r)
t = L

(r)
P,tΛ

(r)
t L

(r)′
P,t .

Monte Carlo design B : We generate a conditional precision matrix P
(r)
t with an underlying

sparsity pattern for each time point t = −50, . . .−1, 0, 1, . . . , T . We first obtain a dense Cholesky

factor L
dense,(r)
t = (l

dense,(r)
ij,t ) following Monte Carlo design A. First, we generate a binary selection

matrix M
lower,(r)
t = (m

lower,(r)
ij,t )

i.i.d.∼ Binomial(1, 1− κ) for i > j, with κ determining the sparsity

level. Subsequently, we construct a sparse Cholesky factor L
sparse,(r)
t = (l

sparse,(r)
ij,t ) through

element-wise multiplication with the binary selection matrix: l
sparse,(r)
ij,t = l

dense,(r)
ij,t · mlower,(r)

ij,t .

The precision matrix P
(r)
t is then formed by

P
(r)
t = L

(r)
sparse,tL

(r)′
sparse,t + δΛ

(r)
t ,

where Λ
(r)
t is drawn from a Wishart distribution with T + 3 degrees of freedom and the scale

matrix IN ; Λ(r)
t

i.i.d.∼ W(T + 3, IN). The Wishart distribution, a multivariate extension of the

chi-squared distribution, is conventionally employed for modeling the precision matrices of mul-

tivariate normal distributions. Opting for T +3 degrees of freedom results in reduced variability

around the scale matrix IN , thereby conferring greater stability, albeit with potential amplifi-
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cation, to the diagonal elements of the precision matrix P
(r)
t due to the additive term δΛ

(r)
t .

The selection of IN as the scale matrix normalizes the expected conditional precision structure

to be (T + 3)IN and establishes a quasi-orthogonal structure in P
(r)
t . This choice perserves the

structure of the sparse components, L
(r)
sparse,tL

(r)′
sparse,t, even when the sampled Λt predominates

over them. δΛt introduces a dense components into P
(r)
t , resulting a heterogeneous matrix with

both sparse and dense parts. The parameter δ = 0.1 regulates the magnitude of the dense

components, ensuring that the noise they generate does not significantly alter the structure.

Remark 3. The construction of P
(r)
t in Monte Carlo design A requires further clarification,

as it is not a sparse precision matrix. Instead, sparsity is imposed solely on its first term.

The second term introduces denseness into the matrix, which is regulated by the parameter δ.

This hybrid structure is motivated by extant literature that questions the empirical validity of

sparsity assumptions, particularly in economics and finance. For instance, Giannone, Lenza,

and Primiceri (2021) scrutinized multiple economic datasets and concluded that sparsity is

generally not an inherent feature. Echoing this, they advocate for sparsity only when there is

compelling evidence in advance supporting predictive models with a restricted set of explanatory

variables (Barigozzi and Brownlees, 2019). Consequently, our simulation design incorporates

both sparse and dense elements in P
(r)
t to more closely mimic the characteristics of real-world

datasets. However, the incorporation of sparsity remains methodologically advantageous for

computational tractability and interpretability. Additionally, sparse representations can offer a

parsimonious yet effective approximation to complex, high-dimensional data structures.

Remark 4. In the first simulation design, the covariance matrix is highly unstable, yet the

precision matrix exhibits a stable eigenvalue distribution. This situation often arises in high-

dimensional settings where the number of variables significantly exceeds the sample size. While

the covariance matrix becomes ill-conditioned or even singular due to this dimensionality issue,

the corresponding precision matrix maintains stability in its eigenvalues. This phenomenon

is relevant in covariance matrix estimation literature, where the primary focus is stabilizing

the covariance matrix in high-dimensional data. Examples of such datasets include financial

asset returns. On the other hand, the second simulation design considers the situation where,

despite applying techniques to stabilize the covariance matrix, the precision matrix still can

have an unstable eigenvalue distribution. This instability can occur due to factors intrinsic

to the data, such as nonlinear relationships between variables, high noise levels, or outliers.

These factors can distort the precision matrix, making it difficult to achieve stability through

standard regularization or shrinkage methods. Examining these two designs, we aim to assess

the resilience and accuracy of various estimation methods under different stability regimes.
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4.1 Simulation Results

Our simulation presents results for different dimensions, N ∈ {25, 50, 100, 125}, and times, T ∈
{50, 100, 150, 200, 250}. We conducted R = 100 replications across these varying dimensions

and periods. For our proposed Bayesian nonparanormal conditional estimation method, we

perform 4, 000 iterations, with the first 2, 000 serving as the burn-in periods. When applying

the Gibbs sampling algorithm, we fix the parameter c at 0.1 to induce substantial sparsity

within the model. Concerning Bayesian GARCH parameters, we set all mean values to zero,

(µωi
= µθ0i = µθ1i = µa = µb = µγi = µν = 0). We assign a value of 100 to all variance

parameters, except for σ2
γi
, i.e., σ2

ωi
= σ2

θ0i
= σ2

θ1i
= σ2

a = σ2
b = σ2

ν = 100. For σ2
γi
, we selected

0.64−1 to obtain a variance for γi of approximately 0.57 and a probability of γi being between

0 and 1 of roughly 0.58, aligning with Fioruci, Ehlers, and Andrade Filho (2014). We obtained

a Bayes estimate of the conditional precision matrix of P̂t = E[Pt|Z] and a conditional inverse

correlation matrix of Ŝt = E[St|Z] as posterior means.

In each of the Monte Carlo designs, we evaluated the accuracy of the estimated conditional

precision matrices and conditional inverse correlation matrices by computing their spectral and

Frobenius norms of deviation from the true matrices, P0
t and S0

t , respectively. We measured the

performance using the ratio of norm loss averages (RNLA) for the conditional precision matrix,

defined as,

RNLAP(J) ≡

{∑R
r=1

∑T
t=1 ||P̃

(r)
t,j −P0

t ||∑R
r=1

∑T
t=1 ||P̂t

(r)
−P0

t ||

}
(4.2)

for each spectral and Frobenius norm, and similarly, as

RNLAS(J) ≡


∑R

r=1

∑T
t=1

∥∥∥S̃(r)
t,j − S0

t

∥∥∥∑R
r=1

∑T
t=1

∥∥∥Ŝt

(r)
− S0

t

∥∥∥
 , (4.3)

for the conditional inverse correlation matrix, where J = (j) includes DCC-NL (Engle, Ledoit,

and Wolf, 2019), DCC-L (Ledoit and Wolf, 2004b), Gaussian Copula, and t-Copula (Patton,

2009) estimators. P̃
(r)
t,j ≡ Σ̂

−1,(r)

t,j and S̃t,j = R̂
−1,(r)
t,j are estimators of P0

t and S0
t obtained by

inverting the estimated conditional covariance and correlation matrices using the estimation

methods in J . An RNLA(J) above 1 indicates that, on average, the proposed method out-

performs the J method, whereas an RNLA below 1 suggests the inferior performance of our

proposed method compared to method in J .

4.1.1 Monte Carlo design A

Table 1 summarizes the results for Monte Carlo design A, and provide both spectral and Frobe-

nius norm comparisons for the Bayesian nonparanormal conditional estimators and the DCC-NL
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Table 1: Spectral and Frobenius norm losses for the different conditional precision and inverse
correlation matrices estimators – Monte Carlo design A

Bayesian nonparanormal conditional estimator DCC-NL
Norms Spectral Frobenius Spectral Frobenius
T\N 25 50 100 125 25 50 100 125 25 50 100 125 25 50 100 125

Error distribution: εit ∼Gaussian
Conditional precision matrix

50 1.276 1.320 1.982 2.332 2.829 3.864 5.970 7.062 2.529 2.780 3.178 3.188 4.949 6.931 9.716 10.375
100 1.180 1.142 1.549 1.862 2.667 3.695 5.769 6.904 1.972 2.268 2.541 2.499 4.273 6.158 8.763 9.189
150 1.156 1.099 1.551 1.692 2.613 3.604 5.706 6.625 1.848 2.138 2.379 2.265 4.044 5.956 8.274 8.791
200 1.140 1.055 1.425 1.638 2.580 3.496 5.411 6.386 1.803 2.048 2.282 2.227 4.031 5.830 8.245 8.785
250 1.137 1.043 1.332 1.541 2.549 3.434 5.235 6.187 1.768 1.975 2.160 2.296 3.965 5.705 7.991 9.168

Conditional inverse correlation matrix
50 1.938 2.054 2.126 2.159 4.059 5.711 7.913 8.883 2.025 2.199 2.344 2.380 4.242 6.071 8.650 9.670
100 1.941 2.038 2.098 2.117 4.062 5.649 7.770 8.628 2.023 2.197 2.343 2.381 4.231 6.059 8.630 9.676
150 1.940 2.040 2.100 2.116 4.054 5.622 7.772 8.626 2.022 2.198 2.347 2.382 4.229 6.061 8.648 9.687
200 1.936 2.037 2.095 2.113 4.048 5.620 7.779 8.618 2.022 2.198 2.341 2.383 4.229 6.062 8.624 9.696
250 1.934 2.038 2.099 2.116 4.039 5.616 7.758 8.602 2.021 2.198 2.346 2.380 4.225 6.059 8.645 9.662

Error distribution: εit ∼ t-distributed with 3 degrees of freedom
Conditional precision matrix

50 1.521 2.476 4.119 4.601 3.210 5.198 8.939 10.659 4.465 4.657 5.853 5.716 8.704 11.070 17.515 18.194
100 1.337 1.872 2.971 3.480 2.966 4.630 7.917 9.509 3.701 3.462 4.650 4.696 7.435 9.012 14.825 16.026
150 1.254 1.761 2.719 2.934 2.862 4.453 7.548 8.970 3.250 3.122 4.244 3.957 6.595 8.338 13.554 14.192
200 1.200 1.490 2.333 2.878 2.742 4.133 7.086 8.446 2.893 2.886 3.939 3.895 6.275 7.930 13.050 13.699
250 1.176 1.433 2.298 2.489 2.688 4.022 6.912 7.934 2.908 2.823 3.677 3.740 6.168 7.699 12.283 13.781

Conditional inverse correlation matrix
50 1.970 2.097 2.148 2.162 4.191 6.008 8.145 8.963 2.034 2.205 2.349 2.385 4.263 6.090 8.674 9.722
100 1.947 2.064 2.119 2.123 4.094 5.807 7.889 8.693 2.031 2.203 2.347 2.397 4.254 6.076 8.648 9.800
150 1.946 2.073 2.112 2.140 4.078 5.827 7.915 8.904 2.028 2.204 2.351 2.389 4.246 6.080 8.699 9.740
200 1.940 2.054 2.115 2.128 4.062 5.721 7.970 8.791 2.029 2.202 2.346 2.392 4.248 6.071 8.662 9.745
250 1.938 2.056 2.124 2.134 4.049 5.720 8.015 8.779 2.028 2.201 2.349 2.384 4.244 6.073 8.670 9.675

Notes: The average norm losses, computed over 100 replicates (R = 100), are given for both spectral and Frobenius norms. For

the conditional precision matrix (P0
t ) and the conditional inverse correlation matrix (S0

t ), they are 1
R

1
T

∑R
r=1

∑T
t=1 ||P̊t

(r) −P0
t ||

and 1
R

1
T

∑R
r=1

∑T
t=1 ||̊S

(r)
t − S0

t ||, where P̊
(r)
t = {P̂(r)

t , Σ̂t
−1,(r)} and S̊t

(r)
= {Ŝ(r)

t , R̂−1
t }. P̂

(r)
t and Ŝ

(r)
t are the Bayesian

nonparanormal conditional estimators. Σ̂
(r)
t and R̂

(r)
t are DCC-NL estimators of the conditional precision and inverse correlation

matrices of Engle, Ledoit, and Wolf (2019).

estimator. First, we note that the Bayesian method dominates the DCC-NL estimators in both

conditional precision and inverse correlation matrices. Both methods reveal that the loss of

norms decreases with increased sample size. This observation holds even when the error term is

non-Gaussian. Based on the values of the losses of the norms, Tables 2 and 3 will show RNLAs

for the different conditional precision and inverse correlation matrix estimators.

Table 2 provides an evaluation of the Bayesian nonparanormal conditional precision and

inverse correlation matrix estimator’s performance through the RNLAs defined in Equations

(4.2) and (4.3). If the value of the RNLA is greater than 1, it implies the outperformance of

our proposed estimator. For both the spectral and Frobenius norms, our proposed estimator

outperform over both the DCC–L and DCC–NL methods irrespective of the distribution of

the error terms or sample size combinations. First, it can be observed that the RNLA value

decreases as the number of samples, T , increases in the spectral and Frobenius norms of the

conditional precision matrices, which is more pronounced in RNLA with DCC-NL estimators.

The DCC-L estimator shows similar results to the DCC-NL estimator when N = 25, but if T
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Table 2: Ratio of spectral and Frobenius norm loss averages for the different conditional pre-
cision matrix estimators and inverse correlation matrices estimators (DCC–NL and DCC–L
models) – Monte Carlo design A

J DCC-NL DCC-L
Norms Spectral Frobenius Spectral Frobenius
T\N 25 50 100 125 25 50 100 125 25 50 100 125 25 50 100 125

Error distribution: εit ∼Gaussian
Relative norms of conditional precision matrix

50 1.983 2.106 1.603 1.367 1.750 1.794 1.627 1.469 1.946 2.165 1.632 1.373 1.738 1.860 1.671 1.483
100 1.670 1.986 1.640 1.343 1.602 1.666 1.519 1.331 1.678 2.080 1.830 1.340 1.601 1.739 1.705 1.330
150 1.598 1.945 1.535 1.338 1.547 1.653 1.450 1.327 1.608 2.058 1.570 1.333 1.550 1.738 1.492 1.322
200 1.581 1.942 1.602 1.360 1.563 1.667 1.524 1.376 1.605 2.079 1.882 1.350 1.574 1.760 1.785 1.370
250 1.555 1.894 1.622 1.489 1.555 1.661 1.527 1.482 1.580 2.049 1.695 1.842 1.567 1.764 1.596 1.820

Relative norms of conditional inverse correlation matrix
50 1.045 1.070 1.103 1.102 1.045 1.063 1.093 1.089 1.047 1.082 1.111 1.105 1.053 1.093 1.115 1.094
100 1.042 1.078 1.117 1.125 1.041 1.073 1.111 1.121 1.045 1.090 1.140 1.125 1.052 1.105 1.171 1.124
150 1.042 1.078 1.117 1.126 1.043 1.078 1.113 1.123 1.046 1.091 1.126 1.126 1.054 1.112 1.140 1.127
200 1.044 1.079 1.117 1.128 1.045 1.079 1.109 1.125 1.048 1.093 1.146 1.129 1.057 1.114 1.186 1.130
250 1.045 1.078 1.118 1.125 1.046 1.079 1.114 1.123 1.049 1.093 1.129 1.159 1.058 1.116 1.147 1.219

Error distribution: εit ∼ t-distributed with 3 degrees of freedom
Relative norms of conditional precision matrix

50 2.936 1.881 1.421 1.242 2.712 2.130 1.959 1.707 3.514 4.435 3.138 2.422 3.087 3.575 3.099 2.588
100 2.769 1.849 1.565 1.349 2.506 1.946 1.872 1.685 3.104 3.830 3.567 2.300 2.766 2.982 3.116 2.151
150 2.591 1.773 1.561 1.349 2.304 1.872 1.796 1.582 2.761 3.527 2.683 2.195 2.486 2.800 2.408 2.071
200 2.412 1.936 1.688 1.353 2.288 1.919 1.842 1.622 2.534 3.418 3.216 2.197 2.414 2.730 2.805 2.060
250 2.473 1.969 1.600 1.503 2.295 1.914 1.777 1.737 2.525 3.375 2.833 3.064 2.390 2.677 2.417 2.810

Relative norms of conditional inverse correlation matrix
50 1.032 1.052 1.094 1.103 1.017 1.014 1.065 1.085 1.039 1.073 1.121 1.108 1.039 1.065 1.137 1.103
100 1.043 1.068 1.107 1.129 1.039 1.046 1.096 1.127 1.048 1.087 1.158 1.128 1.055 1.096 1.214 1.130
150 1.043 1.063 1.113 1.117 1.041 1.043 1.099 1.094 1.045 1.080 1.131 1.128 1.053 1.087 1.154 1.131
200 1.046 1.072 1.109 1.124 1.046 1.061 1.087 1.109 1.050 1.088 1.150 1.131 1.058 1.103 1.199 1.134
250 1.047 1.070 1.106 1.117 1.048 1.062 1.082 1.102 1.049 1.084 1.130 1.166 1.059 1.099 1.153 1.239

Notes: The Ratio of Spectral and Frobenius Norm Loss Averages (RNLA) for both Spectral and Frobenius norms are com-

puted from 100 replications (R = 100): RNLAP(J) = {
∑R

r=1

∑T
t=1 ||P̃

(r)
t,j − P0

t ||/
∑R

r=1

∑T
t=1 ||P̂t

(r) − P0
t ||} and RNLAS(J) =

{
∑R

r=1

∑T
t=1 ||S̃

(r)
t,j −S0

t ||/
∑R

r=1

∑T
t=1 ||Ŝt

(r)−S0
t ||}, and J = DCC–L and DCC–NL of Ledoit and Wolf (2004b) and Engle, Ledoit,

and Wolf (2019), where P̂t and Ŝt denote the posterior mean of the conditional precision and inverse correlation matrices derived
from the Bayesian approach we suggest, while P0

t and S0
t refers to the known true conditional precision and inverse correlation

matrices.

is not large enough for the number of variables, N , DCC-L shows an increased RNLA. As N

increases, there is a decrease in most of the RNLA values, though this decrease is not the same

for all T s. This implies that with an increase in N , the results from both DCC-L and DCC-

NL are likely to align more closely with those obtained from our proposed estimation method.

When estimating conditional inverse correlation matrices, an increase in both N and T leads to

an increase in RNLA. It is even more pronounced in non-Gaussian distribution. When DCC-NL

and DCC-L are compared, DCC-NL shows better results than DCC-L regardless of the number

of variables and sample size. This difference can be seen better in the case of non-Gaussian

distribution.

Table 3 presents the RNLA values for both the conditional precision and inverse correlation

matrix estimators for Gaussian Copula and t-Copula. Our proposed estimator produces better

estimation results than Gaussian Copula and t-Copula as the number of variables increases.
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Table 3: Ratio of spectral and Frobenius norm loss averages for the different conditional preci-
sion matrix estimators, Pt, and inverse correlation matrix estimators, St (Gaussian and t-Copula
models) – Monte Carlo design A

J Gaussian Copula t-Copula
Norms Spectral Frobenius Spectral Frobenius
T\N 25 50 100 125 25 50 100 125 25 50 100 125 25 50 100 125

Error distribution: εit ∼Gaussian
Relative norms of conditional precision matrix

50 9.040 n/a n/a n/a 5.956 n/a n/a n/a 15.769 n/a n/a n/a 10.205 n/a n/a n/a
100 3.536 9.790 n/a n/a 2.818 5.648 n/a n/a 6.362 9.833 n/a n/a 4.831 5.660 n/a n/a
150 2.732 5.310 18.296 70.618 2.305 3.542 9.721 28.530 4.530 5.302 18.129 69.953 3.723 3.548 9.629 28.250
200 2.461 4.129 7.927 13.163 2.149 2.930 5.208 7.832 3.860 4.163 7.850 13.020 3.385 2.969 5.153 7.741
250 2.232 3.497 5.668 7.531 2.029 2.621 3.972 5.070 3.739 3.542 5.617 7.449 3.269 2.668 3.927 5.008

Relative norms of conditional inverse correlation matrix
50 1.657 n/a n/a n/a 1.567 n/a n/a n/a 1.700 n/a n/a n/a 1.572 n/a n/a n/a
100 1.124 1.847 n/a n/a 1.239 1.616 n/a n/a 1.122 1.853 n/a n/a 1.240 1.618 n/a n/a
150 1.091 1.245 3.396 6.959 1.162 1.383 2.111 3.061 1.089 1.241 3.393 6.959 1.159 1.382 2.110 3.061
200 1.080 1.151 2.006 2.953 1.130 1.289 1.682 1.990 1.081 1.152 2.002 2.950 1.133 1.292 1.680 1.988
250 1.071 1.134 1.514 2.020 1.110 1.238 1.522 1.704 1.073 1.136 1.511 2.016 1.113 1.241 1.520 1.701

Error distribution: εit ∼ t-distributed with 3 degrees of freedom
Relative norms of conditional precision matrix

50 7.471 n/a n/a n/a 5.166 n/a n/a n/a 12.095 n/a n/a n/a 8.174 n/a n/a n/a
100 3.128 8.732 n/a n/a 2.538 6.210 n/a n/a 6.177 9.573 n/a n/a 4.609 6.932 n/a n/a
150 2.542 4.794 15.852 51.00 2.133 3.887 11.195 27.652 4.871 5.763 13.775 46.750 3.717 4.688 9.710 25.294
200 2.387 4.079 8.375 12.27 2.071 3.351 6.622 9.498 4.355 5.252 7.411 10.444 3.518 4.115 5.865 8.062
250 2.213 3.523 6.105 7.96 1.988 2.906 5.329 6.637 4.117 4.633 5.138 6.610 3.358 3.735 4.479 5.485

Relative norms of conditional inverse correlation matrix
50 1.632 n/a n/a n/a 1.519 n/a n/a n/a 1.647 n/a n/a n/a 1.521 n/a n/a n/a
100 1.122 1.832 n/a n/a 1.233 1.572 n/a n/a 1.130 1.825 n/a n/a 1.246 1.580 n/a n/a
150 1.091 1.237 3.312 6.449 1.161 1.338 2.078 2.905 1.103 1.221 9.710 6.456 1.176 1.339 2.071 2.904
200 1.083 1.141 1.994 2.977 1.134 1.270 1.655 1.965 1.095 1.148 5.865 2.963 1.149 1.276 1.648 1.957
250 1.076 1.118 1.505 2.035 1.117 1.210 1.486 1.685 1.089 1.132 4.479 2.017 1.131 1.226 1.474 1.673

Notes: The Ratio of Spectral and Frobenius Norm Loss Averages (RNLA) for both Spectral and Frobenius norms are com-

puted from 100 replications (R = 100): RNLAP(J) = {
∑R

r=1

∑T
t=1 ||P̃

(r)
t,j − P0

t ||/
∑R

r=1

∑T
t=1 ||P̂t

(r) − P0
t ||} and RNLAS(J) =

{
∑R

r=1

∑T
t=1 ||S̃

(r)
t,j − S0

t ||/
∑R

r=1

∑T
t=1 ||Ŝt

(r) − S0
t ||}, and J = Gaussian Copula and t-Copula of Patton (2009), where P̂t and

Ŝt denote the posterior mean of the conditional precision and inverse correlation matrices derived from the Bayesian approach we
suggest, while P0

t and S0
t refers to the known true conditional precision and inverse correlation matrices. Gaussian and t-Copula

models lack regularization or shrinkage methods within their estimation procedures. These models fail to yield estimates in the
singular case (T < N). Such instances are denoted as ‘not applicable’ (n/a).

However, if T is significantly large relative to N , it can be seen that RNLA decreases regard-

less of the error distribution. Neither Gaussian Copula nor t-Copula assume a situation where

the size of the sample is larger than the number of variables, so they do not use shrinkage

or regularization methodologies in estimating the unconditional correlation matrix. Therefore,

when N > T , it is denoted as n/a. When compared with DCC-L and DCC-NL based on the

relative size of RNLA, for example, with the exception of Gaussian Copula in the non-Gaussian

distribution, DCC-L and DCC-NL provide better estimates in most cases. When comparing

Gaussian Copula and t-Coupla, it can be seen that Gaussian Copula shows better performance

regardless of the distribution of error terms, or N and T combinations in estimating the con-

ditional precision matrix. On the other hand, in the case of conditional inverse correlation, a

slight difference in performance can be observed, but the difference disappears as T increases.
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Results based on the Monte Carlo design A illustrate the effectiveness of estimating the

conditional precision and inverse correlation matrices under relatively stable eigenvalue distri-

butions instead of inverting the estimated conditional covariance and conditional correlation

matrices.

4.1.2 Monte Carlo design B

Table 4: Spectral and Frobenius norm losses for the different conditional precision and inverse
correlation matrices estimators – Monte Carlo design B

Bayesian nonparanormal conditional estimator DCC-NL
Norms Spectral Frobenius Spectral Frobenius
T\N 25 50 100 125 25 50 100 125 25 50 100 125 25 50 100 125

Error distribution: εit ∼Gaussian
Conditional precision matrix

50 23.74 39.55 68.31 81.99 50.81 102.41 228.00 299.43 22.99 38.92 67.88 81.58 47.68 98.96 224.63 296.08
100 29.78 45.64 74.87 89.31 73.80 134.41 273.08 352.90 29.27 45.17 74.49 89.05 71.45 131.52 269.95 350.22
150 35.99 52.00 81.83 95.71 97.84 167.68 320.91 403.65 35.59 51.61 81.50 95.43 95.96 165.23 318.17 401.05
200 42.04 58.11 88.21 102.17 122.10 201.39 367.76 456.01 41.71 57.78 87.90 101.90 120.51 199.22 365.11 453.60
250 48.06 64.57 94.79 109.30 146.56 235.98 415.60 510.59 47.78 64.28 94.53 109.04 145.17 234.04 413.33 508.05

Conditional inverse correlation matrix
50 1.30 1.91 2.64 2.89 2.93 5.32 9.05 10.67 1.31 1.91 2.64 2.89 2.93 5.26 9.06 10.66
100 1.05 1.46 2.08 2.31 2.34 4.24 7.59 9.08 1.03 1.48 2.09 2.32 2.32 4.27 7.63 9.13
150 0.94 1.24 1.76 1.97 2.02 3.69 6.69 8.07 0.91 1.27 1.79 1.98 2.00 3.70 6.77 8.15
200 0.85 1.10 1.55 1.74 1.80 3.31 6.06 7.35 0.85 1.15 1.58 1.76 1.80 3.32 6.11 7.45
250 0.79 1.02 1.40 1.58 1.65 3.03 5.58 6.82 0.81 1.07 1.44 1.60 1.65 3.04 5.67 6.85

Error distribution: εit ∼ t-distributed with 3 degrees of freedom
Conditional precision matrix

50 23.68 39.34 68.00 82.43 50.58 101.85 227.03 300.92 22.40 38.44 67.18 81.84 45.38 96.84 221.06 295.76
100 29.83 45.58 74.78 89.53 73.72 134.25 272.90 353.38 28.80 44.79 73.99 88.87 68.99 129.53 266.60 347.48
150 35.86 51.99 81.64 95.23 97.48 167.51 320.24 401.70 35.045 51.35 80.94 94.72 93.62 163.55 314.42 396.48
200 41.99 58.14 88.27 102.57 121.69 201.01 367.50 456.61 41.29 57.60 87.67 101.95 118.27 197.64 362.10 451.29
250 47.96 64.47 94.72 109.29 146.01 235.19 415.00 510.16 47.35 64.09 94.19 108.77 143.00 232.47 410.34 505.06

Conditional inverse correlation matrix
50 1.36 1.95 2.63 2.90 3.14 5.61 9.08 10.74 1.33 1.91 2.64 2.90 2.95 5.30 9.08 10.70
100 1.05 1.49 2.09 2.32 2.37 4.47 7.73 9.19 1.06 1.49 2.09 2.33 2.36 4.30 7.65 9.24
150 0.93 1.29 1.79 1.99 2.05 4.01 6.98 8.31 0.95 1.28 1.79 1.99 2.04 3.73 6.83 8.21
200 0.87 1.15 1.61 1.77 1.83 3.60 6.57 7.70 0.90 1.16 1.59 1.77 1.85 3.34 6.17 7.52
250 0.83 1.08 1.46 1.60 1.68 3.28 6.10 7.07 0.85 1.09 1.45 1.60 1.70 3.07 5.71 6.86

Notes: The average norm losses, computed over 100 replicates (R = 100), are given for both spectral and Frobenius norms. For

the conditional precision matrix (P0
t ) and the conditional inverse correlation matrix (S0

t ), they are 1
R

1
T

∑R
r=1

∑T
t=1 ||P̊t

(r) −P0
t ||

and 1
R

1
T

∑R
r=1

∑T
t=1 ||̊S

(r)
t − S0

t ||, where P̊
(r)
t = {P̂(r)

t , Σ̂t
−1,(r)} and S̊t

(r)
= {Ŝ(r)

t , R̂−1
t }. P̂

(r)
t and Ŝ

(r)
t are the Bayesian

nonparanormal conditional estimators. Σ̂
(r)
t and R̂

(r)
t are DCC-NL estimators of the conditional precision and inverse correlation

matrices of Engle, Ledoit, and Wolf (2019).

Table 4 presents the norm losses for Bayesian nonparanormal conditional estimators of the

conditional inverse correlation matrix for Monte Carlo design B. Our findings show that both

the Bayesian nonparanormal conditional estimator and the DCC-NL estimator fail to accu-

rately estimate the conditional precision matrix due to their unstable eigenvalue distribution in

Monte Carlo design B. Conversely, we can still estimate the conditional inverse correlation with

widely distributed eigenvalues by stabilizing the distribution through rescailng in the estimated

precision matrix. Thus, our proposed estimator yields norms comparable to the DCC-NL and
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outperforms scaled estimates like conditional partial correlation, even under these conditions.

Based on the values of the losses of the norms, Tables 5 and 6 will show RNLAs for the different

conditional precision and inverse correlation matrix estimators.

Table 5: Ratio of spectral and Frobenius norm loss averages for the different conditional pre-
cision matrix estimators and inverse correlation matrices estimators (DCC–NL and DCC–L
models) – Monte Carlo design B

J DCC-NL DCC-L
Norms Spectral Frobenius Spectral Frobenius
T\N 25 50 100 125 25 50 100 125 25 50 100 125 25 50 100 125

Error distribution: εit ∼Gaussian
Relative norms of conditional precision matrix

50 0.969 0.984 0.994 0.995 0.938 0.966 0.985 0.989 0.969 0.984 0.993 0.996 0.939 0.965 0.985 0.989
100 0.983 0.990 0.995 0.997 0.968 0.979 0.989 0.992 0.983 0.989 0.995 0.996 0.968 0.977 0.987 0.992
150 0.989 0.993 0.996 0.997 0.981 0.985 0.991 0.994 0.989 0.992 0.996 0.997 0.981 0.984 0.991 0.994
200 0.992 0.994 0.997 0.997 0.987 0.989 0.993 0.995 0.992 0.993 0.995 0.998 0.986 0.987 0.990 0.995
250 0.994 0.995 0.997 0.998 0.991 0.992 0.995 0.995 0.994 0.995 0.997 0.996 0.990 0.990 0.994 0.992

Relative norms of conditional inverse correlation matrix
50 1.006 1.001 1.002 1.000 1.000 0.990 1.002 1.000 1.006 1.015 1.006 1.001 1.023 1.027 1.015 1.002
100 0.982 1.015 1.006 1.003 0.993 1.007 1.006 1.005 0.973 1.041 1.031 1.003 1.047 1.084 1.073 1.008
150 0.967 1.024 1.012 1.006 0.992 1.001 1.011 1.010 0.952 1.061 1.027 1.007 1.075 1.127 1.059 1.016
200 0.995 1.039 1.018 1.011 0.998 1.005 1.008 1.014 0.968 1.073 1.079 1.012 1.109 1.163 1.172 1.025
250 1.022 1.055 1.033 1.014 1.002 1.005 1.016 1.003 0.982 1.080 1.060 1.086 1.122 1.187 1.112 1.200

Error distribution: εit ∼ t-distributed with 3 degrees of freedom
Relative norms of conditional precision matrix

50 0.946 0.977 0.988 0.993 0.897 0.951 0.974 0.983 0.943 0.966 0.982 0.997 0.893 0.934 0.968 0.987
100 0.966 0.983 0.989 0.993 0.936 0.965 0.977 0.983 0.967 0.976 0.985 0.995 0.935 0.952 0.971 0.986
150 0.977 0.988 0.992 0.995 0.960 0.976 0.982 0.987 0.974 0.983 0.988 0.990 0.957 0.966 0.979 0.983
200 0.983 0.991 0.993 0.994 0.972 0.983 0.985 0.988 0.982 0.987 0.991 0.998 0.968 0.974 0.980 0.990
250 0.987 0.994 0.994 0.995 0.979 0.988 0.989 0.990 0.985 0.989 0.993 0.993 0.976 0.979 0.986 0.985

Relative norms of conditional inverse correlation matrix
50 0.976 0.984 1.002 1.000 0.940 0.945 0.999 0.997 1.034 1.029 1.009 1.004 1.068 1.064 1.029 1.008
100 1.016 0.998 1.001 1.004 0.997 0.960 0.990 1.005 1.009 1.066 1.048 1.003 1.091 1.137 1.125 1.013
150 1.012 0.993 1.002 1.001 0.996 0.930 0.978 0.987 0.984 1.079 1.035 1.008 1.101 1.159 1.079 1.021
200 1.037 1.008 0.989 1.000 1.013 0.927 0.938 0.976 1.010 1.089 1.087 1.017 1.138 1.184 1.195 1.032
250 1.028 1.009 0.997 1.003 1.009 0.936 0.937 0.971 1.022 1.089 1.067 1.096 1.143 1.191 1.123 1.233

Notes: The Ratio of Spectral and Frobenius Norm Loss Averages (RNLA) for both Spectral and Frobenius norms are com-

puted from 100 replications (R = 100): RNLAP(J) = {
∑R

r=1

∑T
t=1 ||P̃

(r)
t,j − P0

t ||/
∑R

r=1

∑T
t=1 ||P̂t

(r) − P0
t ||} and RNLAS(J) =

{
∑R

r=1

∑T
t=1 ||S̃

(r)
t,j −S0

t ||/
∑R

r=1

∑T
t=1 ||Ŝt

(r)−S0
t ||}, and J = DCC–L and DCC–NL of Ledoit and Wolf (2004b) and Engle, Ledoit,

and Wolf (2019), where P̂t and Ŝt denote the posterior mean of the conditional precision and inverse correlation matrices derived
from the Bayesian approach we suggest, while P0

t and S0
t refers to the known true conditional precision and inverse correlation

matrices.

Tables 5 and 6 show the RNLA values for each estimator. First, as Table 4 shows, Monte

Carlo design B shows that no estimator we consider gives a sufficient estimation of the condi-

tional precision matrix. Therefore, in Tables 5 and 6, we will focus more on the result of the

conditional inverse correlation. As shown in Table 5, irrespective of the error term distribu-

tion, in most cases, our proposed estimation method gives comparable results with DCC–NL

and slightly better performance than DCC–L in estimating the conditional inverse correlation

matrix. However, no clear ordering emerges when we compare DCC–NL and DCC–L.

Similarly, in Table 6, our proposed estimator shows better performance than Gaussian Cop-

ula and t-Copula in estimating conditional inverse correlation. When compared with other
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Table 6: Ratio of spectral and Frobenius norm loss averages for the different conditional pre-
cision matrix estimators and inverse correlation matrices estimators (Gaussian and t-Copula
models) – Monte Carlo design B

J Gaussian Copula estimator t-Copula estimator
Norms Spectral Frobenius Spectral Frobenius
T\N 25 50 100 125 25 50 100 125 25 50 100 125 25 50 100 125

Error distribution: εit ∼Gaussian
Relative norms of conditional precision matrix

50 0.936 n/a n/a n/a 0.897 n/a n/a n/a 0.969 n/a n/a n/a 0.920 n/a n/a n/a
100 0.971 0.970 n/a n/a 0.944 0.939 n/a n/a 0.951 0.970 n/a n/a 0.901 0.939 n/a n/a
150 0.981 0.982 0.975 1.141 0.967 0.964 0.951 0.995 0.961 0.982 0.976 1.135 0.934 0.964 0.952 0.994
200 0.987 0.987 0.985 0.983 0.977 0.976 0.969 0.964 0.976 0.988 0.986 0.983 0.954 0.976 0.970 0.964
250 0.990 0.990 0.990 0.988 0.984 0.982 0.979 0.976 0.976 0.991 0.990 0.989 0.961 0.982 0.979 0.976

Relative norms of conditional inverse correlation matrix
50 2.426 n/a n/a n/a 1.908 n/a n/a n/a 2.465 n/a n/a n/a 1.910 n/a n/a n/a
100 1.540 2.552 n/a n/a 1.527 1.903 n/a n/a 1.545 2.550 n/a n/a 1.526 1.902 n/a n/a
150 1.296 1.913 4.030 7.406 1.424 1.652 2.316 3.195 1.289 1.912 4.027 7.404 1.412 1.651 2.314 3.195
200 1.197 1.656 2.669 3.550 1.381 1.565 1.909 2.175 1.224 1.654 2.663 3.546 1.387 1.563 1.906 2.173
250 1.118 1.496 2.218 2.679 1.343 1.505 1.765 1.900 1.133 1.493 2.213 2.674 1.366 1.501 1.760 1.896

Error distribution: εit ∼ t-distributed with 3 degrees of freedom
Relative norms of conditional precision matrix

50 0.939 n/a n/a n/a 0.902 n/a n/a n/a 0.968 n/a n/a n/a 0.930 n/a n/a n/a
100 0.969 0.954 n/a n/a 0.945 0.915 n/a n/a 0.950 0.958 n/a n/a 0.905 0.920 n/a n/a
150 0.985 0.968 0.966 1.407 0.970 0.936 0.939 1.038 0.967 0.970 0.970 1.296 0.939 0.940 0.944 1.021
200 0.987 0.975 0.976 0.973 0.980 0.951 0.949 0.946 0.974 0.977 0.979 0.978 0.954 0.956 0.956 0.954
250 0.991 0.980 0.980 0.980 0.986 0.962 0.960 0.958 0.980 0.982 0.984 0.984 0.966 0.967 0.968 0.967

Relative norms of conditional inverse correlation matrix
50 2.311 n/a n/a n/a 1.777 n/a n/a n/a 2.329 n/a n/a n/a 1.780 n/a n/a n/a
100 1.562 2.531 n/a n/a 1.513 1.829 n/a n/a 1.578 2.526 n/a n/a 1.544 1.825 n/a n/a
150 1.315 1.811 3.898 7.031 1.423 1.538 2.228 3.055 1.357 1.805 3.886 7.040 1.472 1.532 2.220 3.054
200 1.202 1.606 2.582 3.543 1.394 1.475 1.779 2.093 1.277 1.588 2.568 3.526 1.453 1.458 1.769 2.083
250 1.105 1.458 2.126 2.679 1.362 1.446 1.633 1.857 1.234 1.431 2.102 2.655 1.430 1.416 1.614 1.841

Notes: The Ratio of Spectral and Frobenius Norm Loss Averages (RNLA) for both Spec-
tral and Frobenius norms are computed from 100 replications (R = 100): RNLAP(J) =

(
∑R

r=1

∑T
t=1 ||P̃

(r)
t,j − P0

t ||/
∑R

r=1

∑T
t=1 ||P̂t

(r)
− P0

t ||} and RNLAS(J) = {
∑R

r=1

∑T
t=1 ||S̃

(r)
t,j −

S0
t ||/

∑R
r=1

∑T
t=1 ||Ŝt

(r)
−S0

t ||}, and J = Gaussian Copula and t-Copula of Patton (2009), where

P̂t and Ŝt denote the posterior mean of the conditional precision and inverse correlation ma-
trices derived from the Bayesian approach we suggest, while P0

t and S0
t refers to the known

true conditional precision and inverse correlation matrices. Gaussian and t-Copula models lack
regularization or shrinkage methods within their estimation procedures. These models fail to
yield estimates in the singular case (T < N). Such instances are denoted as ‘not applicable’
(n/a).

variables, both Gaussian Copula and t-Copula gave higher RNLA values for all norm values

compared to DCC-L and DCC-NL when the sample size was insufficient for the number of

variables.

In the context of Monte Carlo design B, the simulation results demonstrate that estimating

the conditional inverse correlation matrix is not only feasible but also yields competitive per-

formance compared to other estimation approaches. By contrast, the accuracy of conditional

precision matrix estimations does not reach justifiable levels with any of the evaluated methods.
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5 Empirical Applications

We consider the application of the proposed Bayesian nonparanormal conditional estimation

to both foreign stock price indices and the blue chip stocks selected based on the market

capitalization4 within S&P 500 index. The first application concerning foreign stock price

indices aims to estimate their interdependencies by examining conditional partial correlations.

While conditional correlations are commonly employed for this purpose, they may conflate the

effects of widespread global phenomena with those of specific, bilateral interactions. Conditional

partial correlations are applied here with the aim of to mitigate the effect of common factors.

In the second application, we test H0 : αi = 0 for i = 1, 2, . . . , N to validate if the excess return

of a financial asset equals its factor loadings times the excess returns of related risk factors,

plus a random component, in a frictionless market. Validating this hypothesis requires the

estimation of precision matrices that are integral to Wald-type test statistics in the context of

asset pricing models. We consider the Ĵα test developed by Pesaran and Yamagata (2023), the

GOS test by Gagliardini, Ossola, and Scaillet (2016), and the Standardized Wald tests based

on the conditional precision matrices estimated by our proposed method and the DCC-NL.

In applying our proposed method, we implement 4,000 iterations, including a 2,000-iteration

burn-in period. The daily return for security i on day t, expressed as rit, is computed as

rit = 100 log(pt/pt−1), where pt represents the closing price of the financial security on the given

day.

5.1 Foreign Stock Price Indexes

In the application to the foreign stock price indexes, we analyze a combined time series from a

chosen dataset of stock price indices, including the Dow Jones and NASDAQ from the United

States, the DAX from Germany, the CAC40 from France, and the NIKKEI from Japan (N = 5).

Our analysis covers 7,600 trading days (T = 7, 600), stretching from January 4, 1991, to August

31, 2023. The data, which was obtained from Google Finance, ensures uniformity in the sample

size, counteracting the variations in trading days across the indices. These variations result

from national holidays, time zone differences, and market-specific practices.5

We apply our proposed Bayesian estimation approach to calculate the posterior mean of

4The market capitalization is calculated by multiplying the share price of the company’s stock by the total
number of its (outstanding) shares daily. Then, we take an average across the sample periods to rank the stocks
based on the average market capitalization. From September 2, 2016, to July 31, 2023, most of the stocks in
the list in Appendix C have been part of S&P 500 index.

5In our study, we focus on only 5 foreign stock indices. While this number may seem limited in high-
dimensional settings, our main objective is to examine pairwise partial correlations. Given that there are 10
(= N(N−1)/2) such pairwise correlations when N = 5, a smaller set of variables is preferable for demonstrating
the overall dependence across different time periods. This small number of variables allows for a clearer and
more focused examination of the interrelationships among the selected stock indices.
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conditional partial correlations, Ψ̂t, as defined in Equation (2.8), using residuals from return

regression without considering common factors as in (2.1). In contrast, for the conditional

correlations, R̂t, we employ the method proposed by Engle, Ledoit, and Wolf (2019), estimated

using residuals from return regressions that include K common factors, estimated by principal

component analysis (PCA). The number of factors is set at K = 1, by following Hallin and

Lǐska (2007).

In this application, the conditional correlations and conditional partial correlations assess

distinct aspects of the interdependence of the variables. Specifically, conditional correlations,

derived from the residuals of a PCA regression, reflect the relationships between variables by

adjusting for the variance captured by broad, statistically derived (unknown) common factors.

This method shows the co-movement of variables in response to these overarching factors. How-

ever, it might not capture the direct connections between individual variables when all variables

are considered. In contrast, conditional partial correlations with our proposed method offer a

different perspective. They calculate the exclusive, bilateral relationships between variables,

excluding the influence of any other variable in the dataset. This method distinctly determines

the direct relationship between any two variables, irrespective of their categorization as common

factors. Thus, while conditional correlations provide valuable context on how variables inter-

act in light of PCA-based common factors, conditional partial correlations reveal the inherent

associations between individual variable pairs, irrespective of the influence of other variables.

Consequently, examining both conditional partial correlations and conditional correlations is

beneficial, even when common factors are considered in the conditional correlations.

Table 7 provides summary statistics of R̂t = (r̂t(i, j)), and Ψ̂t = (ψ̂t(i, j)), across different

stock index pairs for the period from April 1, 1991, to August 31, 2023. r̂t(DJI,NASDAQ) is

positive with a mean of 0.47 and a standard deviation of 0.22, indicating moderate variability

around a generally strong relationship. Similarly, r̂t(DAX,CAC40) shows a mean correlation of

0.42 and a conditional partial correlation mean of 0.24. These figures are among the highest in

the dataset, indicating a robust linkage. The relatively stronger relations in both correlations

and partial correlations for these index pairs could stem from several factors. The DJI and

NASDAQ, both US stock indices, are more likely influenced by similar economic and market

forces, resulting in a stronger correlation. The DAX and CAC40, representing major European

economies, exhibit a strong relationship due to their geographical proximity and economic ties

within the European Union, which could lead to synchronized economic cycles and business

environments. The significant partial correlations suggest that even when controlling for other

influences, the direct relationship between these European indices remains robust, likely due

to shared economic policies, trade relationships, and financial regulations within the European

market.

Table 8 presents the average values and standard deviations for the estimated conditional

28



Table 7: Descriptive Statistics of R̂t and Ψ̂t: Full Sample Periods (01. 04. 1991 – 08. 31. 2023)

R̂t Ψ̂t

Full sample periods (01.04.91–08.31.23) Mean Std Mean Std
DJI & NASDAQ 0.47 0.22 0.20 0.08
DJI & DAX –0.46 0.16 0.06 0.07
DJI & CAC40 –0.44 0.16 0.07 0.07
DJI & NIKKEI –0.31 0.14 0.01 0.08
NASDAQ & DAX –0.60 0.12 0.06 0.07
NASDAQ & CAC40 –0.64 0.12 0.04 0.07
NASDAQ & NIKKEI –0.31 0.13 0.02 0.08
DAX & CAC40 0.42 0.22 0.24 0.07
DAX & NIKKEI –0.25 0.16 0.04 0.08
CAC40 & NIKKEI –0.20 0.15 0.04 0.08

Notes: The table presents the average and standard deviations for estimated conditional correlations (R̂t) and conditional partial

correlations (Ψ̂t). We derive R̂t using the approach proposed by Engle, Ledoit, and Wolf (2019) and obtain Ψ̂t through a Bayesian

nonparanormal conditional estimation method we suggest. We calculate R̂t after adjusting for a single factor, identified via principal
component analysis. Hallin and Lǐska (2007) method determines the number of factors to consider. The abbreviations for the stock
indexes are as follows: DJI denotes the Dow Jones Industrial Average, NASDAQ signifies the National Association of Securities
Dealers Automated Quotations, DAX stands for Deutscher Aktienindex, CAC40 is an acronym for Cotation AssistÃ©e en Continu
40, and NIKKEI represents the Nikkei 225 Stock Average.

correlations and the estimated conditional partial correlations across six distinct episodes of

market turmoil: (1) the Asian Financial Crisis (July 1997 – December 1999), (2) the Dot-com

Bubble Burst (March 2000 – October 2002), (3) the Great Recession (December 2007 – June

2009), (4) the European Sovereign Debt Crisis (October 2010 – August 2012), (5) the COVID–

19 Pandemic (January 2022–August 2022), and (6) the FED’s Inflation-Containment Rate

Hikes (March 2022 – August 2023). The data estimates show that the mean of the conditional

correlations for select index pairs diminishes or becomes increasingly negative amid market

distress. For instance, the average conditional correlation between the DJI and NASDAQ

indices fluctuates from 0.47 over the entire sample to –0.54 to 0.69 throughout the various

crises, signaling a sizable conditional correlation during market instability compared to more

stable periods. Furthermore, the standard deviations for the conditional correlations tend to

be lower during crises than the sample period overall, suggesting a more uniform relationship

between the indices in times of market stress, possibly due to a unified response to global

financial shocks.

In examining the conditional partial correlations, their average values tend to decrease during

market disruptions. For instance, the average values typically range from 0.01 to 0.25, but they

frequently fall towards the lower end of this range or even to 0.00, particularly the DJI and

NIKKEI pair during the Federal Reserve’s rate hikes. Such decreases in average values suggest

a reduction in the direct linkage between indices when considering other market influences.
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Table 8: Descriptive Statistics of the conditional correlations and conditional partial correla-
tions: Six Market disruption periods

Conditional Conditional
correlations partial correlations

Market disruption periods: Mean Std Mean Std
(1) Asian Financial Crisis (07.97 – 12.99)

DJI & NIKKEI –0.23 0.15 0.02 0.08
DAX & NIKKEI –0.26 0.13 0.03 0.08

(2) The Dot-com Bubble Burst (03.20 – 10.02)
DJI & NASDAQ 0.37 0.22 0.18 0.08
NASDAQ & DAX –0.54 0.13 0.05 0.07

(3) The Great Recession (12.07 – 06.09)
DJI & NASDAQ 0.69 0.09 0.23 0.07
DJI & NIKKEI –0.42 0.09 0.01 0.08

(4) European Sovereign Debt Crisis (10.10 – 08.12)
DJI & CAC40 –0.42 0.14 0.10 0.06
DAX & CAC40 0.39 0.11 0.25 0.07

(5) COVID–19 (01.22 – 08.22)
Negative pairwise indices –0.41 0.15 0.05 0.07
Positive pairwise indices 0.46 0.19 0.22 0.08

(6) FED’s Inf.-Containment Rate Hikes (03.22 – 08.23)
DJI & NASDAQ 0.45 0.13 0.22 0.07
DJI & NIKKEI –0.29 0.11 0.00 0.08

Notes: The table presents the average and standard deviations for estimated conditional correlations (R̂t) and conditional partial

correlations (Ψ̂t). We derive R̂t using the approach proposed by Engle, Ledoit, and Wolf (2019) and obtain Ψ̂t through a Bayesian

nonparanormal conditional estimation method we suggest. We calculate R̂t after adjusting for a single factor, identified via principal
component analysis. Hallin and Lǐska (2007) method determines the number of factors to consider. COVID-19 case shows the
collected results of the negative and positive pairwise indices, where ‘Negative pairwise indices’ = {DJI & DAX’, DJI & CAC40, DJI
& NIKKEI, NASDAQ & DAX, NASDAQ & CAC40, NASDAQ & NIKKEI, DAX & NIKKEI, CAC40 & NIKKEI}, and ‘Positve
pairwise indices’ = {DJI & NASDAQ, DAX & CAC40}. The abbreviations for the stock indexes are as follows: DJI denotes
the Dow Jones Industrial Average, NASDAQ signifies the National Association of Securities Dealers Automated Quotations, DAX
stands for Deutscher Aktienindex, CAC40 is an acronym for Cotation AssistÃ©e en Continu 40, and NIKKEI represents the Nikkei
225 Stock Average.

During these market disruption periods, the partial correlations’ variances are generally similar

to, or slightly lower than, those in the whole sample periods. For instance, the standard

deviation for the conditional partial correlation between DJI and CAC40 drops to 0.06 in the

period of the Great Recession from a previous value of 0.07, potentially indicating the same

stable direct relationship despite the market fluctuations.

Our analysis indicates that in times of market upheaval, the relationships between indices,

as captured by both conditional correlations and partial correlations, are characterized by lower

average values but the same variances. This indicates a more uniform response to stress in the

markets.

Figure 1 displays the estimated conditional correlations and conditional partial correlations
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Figure 1: Conditional (Partial) Correlations in Market Disruption Periods: 1997 – 2009

Notes: The figure depicts the estimated conditional correlations (R̂t) and conditional partial correlations (Ψ̂t) during periods of
market disruption, specifically throughout the Asian Financial Crisis, the Dot-com Bubble Burst, and the Great Recession. We
derive R̂t using the approach proposed by Engle, Ledoit, and Wolf (2019) and obtain Ψ̂t through a Bayesian nonparanormal

conditional estimation method we suggest. We calculate R̂t after adjusting for a single factor, identified via principal component
analysis. Hallin and Lǐska (2007) method determines the number of factors to consider. The abbreviations for the stock indexes
are as follows: DJI denotes the Dow Jones Industrial Average, NASDAQ signifies the National Association of Securities Dealers
Automated Quotations, DAX stands for Deutscher Aktienindex, CAC40 is an acronym for Cotation AssistÃ©e en Continu 40,
and NIKKEI represents the Nikkei 225 Stock Average.

for pairs of stock indices during three major market crises: the Asian Financial Crisis (1997-

1999), the Dot-com Bubble Burst (2000-2002), and the Great Recession (2007-2009). The

estimated mean, and variance values shown in this figure correspond to those listed in Table 8.
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During the Asian Financial Crisis, the plot reveals fluctuations in the conditional correla-

tions between the DJI and the NIKKEI, and between the DAX and NIKKEI, alongside their

conditional partial correlations. The conditional correlations and partial correlations between

DJI and NIKKEI and DAX and NIKKEI show different magnitudes. Specifically, DJI and

NIKKEI’s overall mean conditional correlation is -0.31 with a standard deviation of 0.14, as

compared to -0.23 and 0.15, respectively, during the crisis. Conversely, DAX and NIKKEI

maintain a stable mean conditional correlation, moving from -0.25 overall to -0.26 during the

crisis with a reduced standard deviation from 0.16 to 0.13. This indicates that the relation-

ship between DJI and NIKKEI exhibits a slight change during the crisis, whereas DAX and

NIKKEI’s relationship remained largely unchanged. The conditional partial correlations cap-

ture this nuanced difference; the DJI and NIKKEI pair show a minor increase in mean from

0.01 to 0.02, and the DAX and NIKKEI pair see a decrease from 0.04 to 0.03, with both pairs

maintaining a standard deviation of 0.08.

As shown in the second subgraph, during the Dot-com Bubble Burst, the divergence be-

tween the r̂t and ψ̂t of DJI and NASDAQ and DAX and NASDAQ suggests differentiated

market dynamics. This shift influenced the conditional correlation in investor preference from

technology stocks to traditional “brick and mortar” stocks. Therefore, the negative swing in

r̂t(DJI,NASDAQ) pre-mid-2001, which contrasts with the general positivity inΨ̂t throughout

the period, might indicate that while the tech and traditional sectors moved divergently in the

market disruption, the inherent relationship between them, when isolated from the influence

of the DAX and other indices (as the conditional partial correlation suggest), uniformly posi-

tive. The smaller magnitude of the conditional partial correlation could be due to the unique

characteristics of the NASDAQ, which is heavily weighted towards technology stocks, which

experienced a distinct reaction to the economic environment compared to the more diversified

DJI and the European-focused DAX.

The Great Recession period also depicts the divergence in the conditional correlations and

conditional partial correlations, particularly between DJI and NASDAQ, and DJI and NIKKEI.

This divergence suggests the increased disconnections during the recession, reflecting varying

degrees of integration and response to economic stress among different markets. The observed

divergence in r̂t(DJI,NIKKEI) and ψ̂t(DJI,NIKKEI) during the Great Recession reflects the

distinct economic environments and market responses in the United States and Japan. Geo-

graphical separation may contribute to market differentiation, with each country’s unique fiscal

and monetary policies, investor sentiment, and economic conditions influencing the markets,

especially during the market disruption period. These factors lead to the distinct behavior of

the indices, which is captured by partial correlations close to zero, revealing a disconnection

not apparent in the conditional correlation. By contrast, the consistently positive relationship

between DJI and NASDAQ, even after isolating other effects, underscores the significant in-
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terdependence within the U.S. markets, which the conditional correlation also cannot capture.

Therefore, the conditional partial correlation offers a granular perspective, capturing the un-

derlying market relationships that conditional correlation might not fully disclose, revealing the

unique market dynamics during the Great Recession.

Figure 2 presents the time-series behavior of the estimated conditional correlations and

conditional partial correlations for stock index pairs during three significant market disruptions:

(4) the European Sovereign Debt Crisis (October 2010 – August 2012), (5) the COVID–19

Pandemic (January 2022–August 2022), and (6) the FED’s Inflation-Containment Rate Hikes

(March 2022 – August 2023). These estimates of mean and variance correspond to the values

tabulated in Table 8.

During the European Sovereign Debt Crisis, the R̂t between the DAX and CAC40 in-

dices declined, indicating market segmentation within Euro, even though France and Germany

avoided the worst of the crisis. This segmentation is discernible through reduced conditional

correlations, yet the underlying connection between these two key Eurozone players remains

inherently positive, as suggested by the Ψ̂t. Conversely, the relationship between the DJI and

CAC40 reflects higher volatility and a tendency towards a negative correlation in terms of R̂t,

which may stem from the disparate nature of the U.S. and French markets during market tur-

bulence. This implies that the interactions between the DJI and CAC40 are more significantly

influenced by extraneous indices rather than a direct financial linkage, underlining the divergent

market behaviors under stress conditions between different economies.

During the COVID-19 pandemic, we analyze distinct groups of stock index pairs, categorized

by positive and negative conditional correlations. Positive conditional correlations are consis-

tently found between indices from the same country, like DJI and NASDAQ, or those belonging

to the same economic area, such as DAX and CAC40 in the European Union. This indicates

that indices within national or regional boundaries tend to move together, likely influenced by

common economic conditions or collective investor sentiment. In contrast, negative conditional

correlations between international index pairs suggest a disconnection of these markets during

the pandemic. Additionally, the conditional partial correlations for these negatively correlated

pairs are close to zero, indicating that their negative correlations are mostly driven by variables

other than the direct relationship between the indices. When these variables are accounted

for, the conditional partial correlation between these international indices is minimal, pointing

to a fundamental disconnection during the pandemic. Thus, while local and regional markets

showed some cohesion during the pandemic, the interconnectedness across global markets was

disrupted.

During the Federal Reserve interest rate hikes aimed at containing inflation, the DJI and

NASDAQ, both US indices, exhibited a similar positive conditional correlation, reflecting their

representativeness of the US market despite the differences in sector composition within each
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Figure 2: Conditional (Partial) Correlations in Market Disruption Periods: 2010 – 2023

Notes: The figure depicts the estimated conditional correlations (R̂t) and conditional partial correlations (Ψ̂t) during episodes of
market turmoil, including the European sovereign debt crisis, the COVID-19 pandemic, and the Federal Reserve’s rate hikes aimed
at controlling inflation. We derive R̂t using the approach proposed by Engle, Ledoit, and Wolf (2019) and obtain Ψ̂t through a

Bayesian nonparanormal conditional estimation method we suggest. We calculate R̂t after adjusting for a single factor, identified
via principal component analysis. Hallin and Lǐska (2007) method determines the number of factors to consider. COVID-19 case
shows the collected results of the negative and positive pairwise indices, where ‘Negative pairwise indices’ = {DJI & DAX’, DJI &
CAC40, DJI & NIKKEI, NASDAQ & DAX, NASDAQ & CAC40, NASDAQ & NIKKEI, DAX & NIKKEI, CAC40 & NIKKEI},
and ‘Positive pairwise indices’ = {DJI & NASDAQ, DAX & CAC40}. The abbreviations for the stock indexes are as follows: DJI
denotes the Dow Jones Industrial Average, NASDAQ signifies the National Association of Securities Dealers Automated Quotations,
DAX stands for Deutscher Aktienindex, CAC40 is an acronym for Cotation AssistÃ©e en Continu 40, and NIKKEI represents the
Nikkei 225 Stock Average.
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index. This similarity in movement contrasts with the period of the Dot-com Bubble, where

sector rotation was a prominent feature. By contrast, ψ̂t(DJI,NIKKEI) is not statistically

significant at the 1% level, suggesting a lack of meaningful linkage in their movements during

this period. This lack of correlation could be attributed to the divergence in monetary policy

approaches between the US and Japan. Specifically, Japan has not mirrored the US’s interest

rate increases, possibly signaling conditional dependence in their monetary policy stances. The

conditional correlation, however, only presents a negative association rather than capturing the

nuances of independent monetary policy decisions. This difference may imply the importance

of distinguishing between correlation and causation: while the indices may move in opposite

directions, it does not necessarily reflect a direct linkage to monetary policy.

Appendix B contains the ten plots detailing both conditional correlations and conditional

partial correlations for the selected five foreign stock indices and their corresponding volatilities.

5.2 Daily Returns on Securities Selected from S&P 500

In this application, we consider a panel of 98 US blue chip stocks, well-established, financially

sound companies recognized for their stability and reliability, across different industry sectors

selected from S&P 500 based on the market capitalization.6 The analysis covers the period

from September 2, 2016, to July 31, 2023, encompassing 1,723 trading days. The data for this

period is collected from Google and Yahoo Finance, and all companies included are constituents

of S&P 500 index throughout this time frame.7

We obtained our time series data for the safe return rate and the five Fama-French factors

from the data library of Ken French. For the risk-free rate(rft), we selected the one-month U.S.

treasury bill rate. The market return (rmt) is represented by the return on S&P 500 index, which

includes the blue chip stocks in our study. Our analysis encompasses two model specifications

assessed using three test statistics. The first is the capital asset pricing model (CAPM), and

the second is the Fama and French (2015) five-factor model (FF5). The FF5 model is given by

the equation:

rit − rft = α̂i + β̂1,iMktRFt + β̂2,iSMBt + β̂3,iHMLt + β̂4,iRMWt + β̂5,iCMAt + ûit, (5.1)

6This study focuses on blue chip stocks for the analysis. It is important to recognize that such a selection
may introduce a bias due to the inherent stability and reliability of these securities, potentially not reflecting
the broader market dynamics. Furthermore, this approach might entail a survival bias, as it considers only well-
performing stocks, excluding those that did not sustain or were more volatile. This limitation is noteworthy
because investors, in practice, do not have the foresight to distinguish future ‘blue chip’ stocks from the entire
market spectrum. Hence, the findings should be interpreted with caution, bearing in mind that they may not
fully capture the investment decisions made under real-world uncertainty and the diverse nature of the market
as represented by a broader index like S&P 500. See Appendix C for the full list of the companies.

7The analyses of both conditional correlations and conditional partial correlations, as discussed in Section
5.1, are also applicable to the current study. For a visual representation of these coefficients of firms from each
GICS sector, refer to Appendix B, where detailed graphs are provided.
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for t = 1, 2, . . . , 1723 and i = 1, 2, . . . , 98. We estimate equation (5.1) by using a rolling window

of h = 20 trading days. In this model, MktRFt is the market excess return defined as rmt− rft,

SMBt represents the size premium measured by the difference in returns between small and

large capitalization stock portfolios, HMLt captures the value premium through the difference

in returns between high book-to-market and low book-to-market portfolios, RMWt differentiates

between the returns of firms with robust and weak profitability, and CMAt contrasts the returns

of firms with conservative and aggressive investment profiles.

Our application examines three test statistics: the Ĵα test developed by Pesaran and Yam-

agata (2023), the GOS test by Gagliardini, Ossola, and Scaillet (2016), and the Standardized

Wald test (SW). Pesaran and Yamagata (2023) demonstrate that the GOS and SW tests tend

to falsely reject true null hypotheses, especially when the time dimension T , is smaller than the

cross-sectional dimension N , compromising their effectiveness in both size and power.

For panel regressions based on time series data, we specify the model as

yi· = αiτ T + Fβi + ui·, (5.2)

where yi· = (yi1, yi2, . . . , yiT )
′, F′ = (f1, f2, . . . , fT ), and ui· = (ui1, ui2, . . . , uiT )

′. We test the

null hypothesis H0 : α = 0, by employing the SW test statistic, written as

SW =
(τ ′

TMFτ T ) α̂Σ
−1
u α̂−N√

2N
, (5.3)

where MF = IT − F(F′F)−1F′ and α = (α1, α2, . . . , αN)
′. The test procedure requires the

estimation of Σ−1
u , which is where our proposed estimators can be applied.

However, as noted above, the SW test suffers from size distortions when T < N and is

not designed for time-varying contexts, thus ruling out the use of rolling windows. To ad-

dress this, we modify the SW test by substituting Σ−1
u with our proposed estimator for the

conditional precision matrix, P̂t,u in Equation (2.6). This is done by first conducting an or-

dinary least squares regression of (5.2) for each cross-sectional unit to obtain the residuals,

which are then combined across all units to form Û = (û1·, û2·, . . . , ûN ·) = (û1, û2 . . . , ûT )
′,

where ût = (u1t, u2t, . . . , uNt)
′. Applying our Bayesian estimation method to these residuals,

we conduct the following time-dependent SW test, written as

SW
(
P̂t,u

)
=

(τ ′
TMFτ T ) α̂P̂t,uα̂−N√

2N
, (5.4)

which allows for the calculation of test statistics when T > N .

In addition to our Bayesian nonparanormal conditional estimator denoted by SW(P̂t,u), we

also consider an alternative method for estimating the conditional precision matrix. This second
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approach, based on the work of Engle, Ledoit, and Wolf (2019), utilizes the nonlinear shrinkage

estimation of the conditional correlation matrices to obtain estimated conditional covariance

matrix, Σ̂t,u, and is represented as SW(Σ̂−1
t,u). Test statistics of Ĵα and GOS are calculated using

20-day rolling windows for daily estimates, covering both the entire sample period and distinct

periods of market disruption.8 For SW tests, conditional precision matrices are determined for

each t = 1, 2, . . . , T , utilizing all T observations. Unlike the rolling window approach, the SW

test statistic is calculated for each period t. Rejection frequencies for these test statistics are

then computed at both 5% and 1% significance levels.

Table 9 summarizes the rejection frequencies of the Ĵα, GOS and SWt tests based on the

CAPM and FF5 model, using the blue chip stocks from S&P 500 index at two nominal sizes (5%

or 1%) during both the full sample period (09.02.16–07.31.23) and specific periods characterized

by market disruption periods: (1) the Post-Crisis Int. Rate Normalization (12.02.16–06.28.19),

(2) COVID-19 (01.20.20–08.31.22), and (3) the FED’s Inf.-Containment Rate Hike (03.16.22–

07.31.23) periods. The Post-Crisis Interest Rate Normalization period refers to the phase during

which the Federal Reserve increased benchmark interest rates, moving away from the near-zero

rates that were in place to support economic recovery after the 2008 financial crisis. This shift

impacted asset valuations and introduced volatility as markets adjusted to a new interest rate

regime. The onset of the COVID-19 global pandemic led to unprecedented economic turmoil,

supply chain disruptions, and extreme market volatility, prompting a flight to safety among

investors and significant intervention by central banks. Lastly, the Federal Reserve’s Inflation-

Containment Rate Hikes reflect a period during which the central bank implemented a series of

interest rate increases to manage rising inflation, thereby increasing the cost of borrowing and

affecting investor sentiment and market liquidity, thus contributing to further market instability.

In the case of the CAPM model, the Ĵα test statistic shows rejection frequencies that range

from 0.10 to 0.75 at the 0.05 significance level. During market disruption periods, the rejection

frequencies are higher, suggesting that the CAPM model is less reliable during these periods.

At the 0.01 significance level, the rejection frequencies are slightly lower but exhibit a similar

pattern. The GOS test exhibits high rejection frequencies across all periods and significance

levels, often reaching 0.99 or 1.00, which suggests a strong rejection of the null hypothesis

and highlights potential inadequacies in the models tested, as shown in Pesaran and Yamagata

(2023). For the FF5 model, the rejection rates are also high across all tests, especially during the

post-crisis interest rate normalization period. This indicates that even a more comprehensive

model like the FF5 model may struggle to explain asset returns during volatile periods.

The observed deviation in the rejection frequencies for Ĵα during the COVID-19 pandemic

may be attributed to a combination of factors, including the global scope and unprecedented

8In the literature, Ĵα and GOS test statistics are calculated using monthly observations with 60-month
windows. In contrast, our study calculates the test statistics of Ĵα and GOS using daily observations with a
20-day rolling window.
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Table 9: Rejection Frequencies of the Ĵα, GOS, and SW tests

Tests Ĵα GOS SW(P̂t,u) SW(Σ̂−1
t,u)

CAPM model
Significance level of 0.05
Full sample period (09.02.16–07.31.23) 0.49 0.96 0.60 0.63
Market disruption periods:
(1) Post-Crisis Int. Rate Normalization (12.02.16–06.28.19) 0.75 0.99 0.34 1.00
(2) COVID-19 (01.20.20–08.31.22) 0.10 0.89 0.81 0.27
(3) FED’s Inf.-Containment Rate Hikes (03.16.22–07.31.23) 0.70 0.99 0.89 0.24
Significance level of 0.01
Full sample period (09.02.16–07.31.23) 0.43 0.94 0.49 0.58
Market disruption periods:
(1) Post-Crisis Int. Rate Normalization (12.02.16–06.28.19) 0.67 0.98 0.24 1.00
(2) COVID-19 (01.20.20–08.31.22) 0.08 0.85 0.69 0.21
(3) FED’s Inf.-Containment Rate Hikes (03.16.22–07.31.23) 0.66 0.98 0.79 0.10
FF5 model
Significance level of 0.05
Full sample period (09.02.16–07.31.23) 0.71 1.00 0.76 0.78
Market disruption periods:
(1) Post-Crisis Int. Rate Normalization (12.02.16–06.28.19) 1.00 1.00 0.75 1.00
(2) COVID-19 (01.20.20–08.31.22) 0.23 0.99 0.80 0.68
(3) FED’s Inf.-Containment Rate Hikes (03.16.22–07.31.23) 0.96 1.00 0.86 0.31
Significance level of 0.01
Full sample period (09.02.16–07.31.23) 0.69 1.00 0.69 0.67
Market disruption periods:
(1) Post-Crisis Int. Rate Normalization (12.02.16–06.28.19) 1.00 1.00 0.69 1.00
(2) COVID-19 (01.20.20–08.31.22) 0.19 0.99 0.72 0.51
(3) FED’s Inf.-Containment Rate Hikes (03.16.22–07.31.23) 0.95 1.00 0.81 0.09

Notes: This table presents the rejection frequencies with the test statistics Ĵα, GOS, SW(P̂t,u), and SW(Σ̂t,u) of null hypotheses
H0 : αi = 0 at significance levels of 0.05 and 0.01. The tests are carried out in the case of the capital asset pricing model
(CAPM) and Fama-French five-factor (FF5) models to the securities within S&P 500 index. The test statistics of Ĵα and GOS
are computed using rolling windows of 20 days for daily estimates, spanning both the entire sample period and specific periods of
market disruption. The SW(P̂t,u) represents the standardized Wald test statistic computed with P̂t,u, obtained through Bayesian

nonparanormal conditional estimation. SW(Σ̂t,u) denotes the standardized Wald test statistic calculated using Σ̂t,u, as estimated
by the DCC–NL model Engle, Ledoit, and Wolf (2019).

nature of market disruptions during this time. The stabilizing actions by governments and

interventions by central banks during this period might have contributed to a more predictable

relationship between returns and identified risk factors, despite this relationship being nonlinear.

Additionally, the use of blue-chip stocks from S&P 500 in our analysis could introduce selection

bias, potentially influencing these results. Furthermore, the difference in methodologies, where

the Ĵα test employs rolling windows and our proposed SW test calculates conditional precision

matrices using the full sample for all t = 1, 2, . . . , T , may also contribute to the observed

discrepancies.
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The comparative evaluation between the SW test and the Ĵα test reveals that the SW(P̂t,u)

test yields rejection frequencies that are aligned with those from the Ĵα test throughout the

overall sample periods. However, during periods of market disruptions, especially those coincid-

ing with the COVID-19 pandemic, both tests exhibit distinct variations in rejection frequencies,

indicating that they may respond differently to market distress.

6 Conclusions

This paper makes two main contributions to the literature on high-dimensional multivariate

volatility modeling, focusing on the estimation of conditional precision matrices and the explo-

ration of conditional dependence.

Our first contribution is the development of a Bayesian method for estimating conditional

precision matrices within a high-dimensional DCC-MGARCH framework. This method circum-

vents the need to invert conditional covariance matrices, which is typically challenging due to

semi-positive definiteness. Our Bayesian approach, leveraging the Wishart distribution, sim-

plifies this process. The estimation utilizes the Metropolis-Hastings algorithm within Gibbs

sampling. To estimate the unconditional precision matrix, we employ a horseshoe prior, intro-

ducing sparsity in high-dimensional contexts.

The second contribution is providing estimates of conditional precision and partial correla-

tion matrices, crucial for understanding volatility interconnections. This is achieved through

a Bayesian nonparanormal framework, which utilizes rank transformation to convert non-

Gaussian distributions into approximate Gaussian ones. Additionally, by implementing a uni-

variate GARCH model for each security, we derive the conditional precision matrix from the

conditional inverse correlation matrix, an approach that outperforms standard nonparanormal

rank-transformation methods in identifying the precision matrix.

We validate our approach through Monte Carlo simulations, comparing it with existing

methods, and find our Bayesian estimator to be more effective in the simulation designs, par-

ticularly in estimating conditional precision and correlation matrices. Applying our method to

empirical data, we analyze daily foreign stock price indices and returns on blue chip stocks from

S&P 500.

Future research is encouraged to extend the current framework by incorporating variational

inference instead of the MCMC approach to improve the computational aspect and the devel-

opment of conditional tail dependence to improve partial correlation. Such extensions would

build upon the foundational work presented here and offer new avenues for capturing more

complex dependencies and behaviors in financial markets.
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A Appendix

A.1 Algorithm 2: Sampling the transformed standardized residuals

Algorithm 2 Sample Z ∼ N (0,S−1)

1: for i=1:n do
2: for r=1:T do
3: if r = 1 then
4: zi,t0 = −∞
5: else
6: zi,tr−1 = ui,tr−1

7: end if
8: if r = T then
9: zi,tT+1

= ∞
10: else
11: zi,tr+1 = ui,tr+1

12: end if
13: Compute µtr,i = −ψ−1

i,i Ψn\i,iun\i,tr
14: Compute σ2

i = ψ−1
i,i

15: Sample zi,tr ∼ T N (µtr,i, σ
2
i ; zi,tr−1 < zi,tr < zi,tr+1)

16: end for
17: end for

A.2 Algorithm 3: Sampling the sparse unconditional precision matrix

Expanding upon the variation in the horseshoe prior specification, as articulated in Model III

by Neville, Ormerod, and Wand (2014), and Mulgrave and Ghosal (2022, 2023) set forth a series

of prior distributions for β in Equation (2.16). For j = 1, 2, . . . , N and i = j + 1, j + 2, . . . , N ,

the priors are formulated as follows:

Zj|Zi>j,βi>jσ
2
j ∼ N

(
Zi>jβi>j, σ

2
j I
)
,

βi>j|λ2j ,bi>j, σ
2
j ∼ N

(
0,
σ2
jbi>jc

2λ2j
N2i

)
, (A.1)

λ2j |aj ∼ IG
(
1

2
,
1

aj

)
, aj ∼ IG

(
1

2
, 1

)
,

bi>j|hi>j ∼ IG
(
1

2
,

1

hi>j

)
, hi>j ∼ IG

(
1

2
, 1

)
,

σ2
j ∼ IG (0.01, 0.01) ,
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where IG stands for the inverse gamma distribution, and σ2
j is chosen to be a diffuse prior.

Given these priors, the posterior distribution for βi>j can be derived. The probability density

in Equation (2.16) is:

L
(
Zj|Zi>jβi>j, σ

2
j

)
∝ exp

{
− 1

2σ2
j

(
Zj − Zi>jβi>j

)′ (
Zj − Zi>jβi>j

)}
. (A.2)

Coupling this with the prior distribution for βi>j in Equation (A.1), defined as:

p
(
βi>j|λ2j ,bi>j, σ

2
j

)
∝ exp

{
− N2i

2σ2
jbi>jc2λ2j

β′
i>jβi>j

}
. (A.3)

Then, from Equations (A.2) and (A.3), the resulting posterior distribution is:

p
(
βi>j|Zj,Zi>j, λ

2
j , bi>j, σ

2
j

)
∝ L

(
Zj|Zi>jβi>j, σ

2
j

)
· p
(
βi>j|λ2j ,bi>j, σ

2
j

)
∝ exp

{
− 1

2σ2
j

(
Zj − Zi>jβi>j

)′ (
Zj − Zi>jβi>j

)
− N2i

2σ2
jbi>jc2λ2j

β′
i>jβi>j

}
∝ exp

{
− 1

2σ2
j

β′
i>j

(
Z′

i>jZi>j + diag

{
N2i

2σ2
jbi>jc2λ2j

})
βi>j

+
1

σ2
j

β′
i>jZ

′
i>jZj

}
.

The distribution exhibits Gaussian properties with mean mean A−1Z′
i>jZj and covariance

σ2
jA

−1, where A = Z′
i>jZi>j + diag

{
N2i

2σ2
jbi>jc2λ2

j

}
and we can write it as

βi>j|λ2j ,bi>j, σ
2
j ∼ N

(
A−1Z′

i>jZj, σ
2
jA

−1
)
. (A.4)

To ameliorate computational burden, particularly for large N , we also adopts an exact sam-

pling algorithm tailored for Gaussian priors, incorporating data augmentation as outlined in

Bhattacharya, Chakraborty, and Mallick (2016). Algorithm 3 elaborates this methodology.
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Algorithm 3 Sample sparse unconditional precision matrix Ω

1: Given initial hyperparameters for λ̃2j , bi>j, σ
2
j , and c,

2: for j = 1 : N − 1 do
3: Partition Zi>j and Zj.

4: Compute D = diag
{

λ2
jbi>jc

2

N2i
1
σ2
j

}
for i > j, Φ =

√
σ2
jZi>j, and a =

√
σ2
jZj.

5: Sample ϕ ∼ N (0,D), v = Φϕ+N (0, I) and solve for w in (ΦDΦ+ I)w = (a− v).
6: Given ϕ, D, Φ, and w, sample βi>j = u+DΦ′w.

7: Sample λ2j ∼ IG
(

|i>j|
2

+ 1
2
, K1

)
, where K1 =

1
2
β′

i>jdiag
{

N2i
σ2
jbi>jc2

}
βi>j +

1
aj

for i > j.

8: Sample aj ∼ IG
(
1, 1 + λ̃−2

j

)
.

9: Sample bi>j ∼ IG (1, K2), where K2 =
N2i

2σ2
j λ̃

2
jc

2βi>j +
1

hi>j
for i > j.

10: Sample hi>j ∼ IG
(
1, 1 + 1

bi>j

)
.

11: Sample σ2
j ∼ IG

(
T+|i>j|

2
+ 0.01, K3

)
, where K3 = 1

2

∥∥Zj − Zi>jβi>j

∥∥2 +

1
2
β′

i>jdiag

{
N2i

λ̃2
jbi>jc2

}
βi>j + 0.01 for i > j.

12: Update Ljj =
√
σ2
j and Lij = −βi>j/Ljj for i > j.

13: end for
14: Sample σ2

N ∼ IG
(
N
2
+ 0.01, K4

)
, where K4 = 0.01 + 1

2
∥ZN∥2.

15: Update LNN =
√
σ2
N .

16: Compute Ω = LL′.
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B Additional Empirical Results

B.1 Foreign Stock Price Indexes

Figure B1: Dynamic Conditional (Partial) Correlations: Foreign Stock Indexes 1

Notes: The dataset has been sourced from Google Finance, spanning the period from January 4, 1991, to August 31, 2023. The
measure for volatility is calculated using the formula: Volatility = 100 log(pt/pt−1), where pt represents the closing price of the
respective stock index. The abbreviations for the stock indexes are as follows: DJI denotes the Dow Jones Industrial Average,
NASDAQ signifies the National Association of Securities Dealers Automated Quotations, DAX stands for Deutscher Aktienindex,
CAC40 is an acronym for Cotation AssistÃ©e en Continu 40, and NIKKEI represents the Nikkei 225 Stock Average.
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Figure B2: Dynamic Conditional (Partial) Correlations: Foreign Stock Indexes 2

Notes: The dataset has been sourced from Google Finance, spanning the period from January 4, 1991, to August 31, 2023. The
measure for volatility is calculated using the formula: Volatility = 100 log(pt/pt−1), where pt represents the closing price of the
respective stock index. The abbreviations for the stock indexes are as follows: DJI denotes the Dow Jones Industrial Average,
NASDAQ signifies the National Association of Securities Dealers Automated Quotations, DAX stands for Deutscher Aktienindex,
CAC40 is an acronym for Cotation AssistÃ©e en Continu 40, and NIKKEI represents the Nikkei 225 Stock Average.
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B.2 Daily Returns on Securities Selected from S&P 500

The following figures delineate the conditional and partial correlation coefficients associated

with the selected firms within each respective GICS sector.

Figure B3: Dynamic Conditional (Partial) Correlations: Blue Chips Stocks from S&P 500 1

Notes: The figure describes the dynamic conditional correlations and dynamic conditional partial correlations among stock price
volatilities for sectors characterized by a high degree of unconditional dependence. Stock ticker symbols corresponding to each
sector are delineated as follows: Materials (FCX), Health Care (ISRG), Industrials (MMM), Information Technology (MSFT),
Utilities (NEE), Communication Services (NFLX), Consumer Discretionary (NKE), Financials (SPG), Consumer Staples (WMT),
and Energy (XOM). A comprehensive list of associated stock tickers can be found in Appendix C. To enhance visual representation,
the dynamic conditional partial correlations have been scaled by a factor of 10.
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Figure B4: Dynamic Conditional (Partial) Correlations: Blue Chips Stocks from S&P 500 2

Notes: The figure describes the dynamic conditional correlations and dynamic conditional partial correlations among stock price
volatilities for sectors characterized by a high degree of unconditional dependence. Stock ticker symbols corresponding to each
sector are delineated as follows: Materials (FCX), Health Care (ISRG), Industrials (MMM), Information Technology (MSFT),
Utilities (NEE), Communication Services (NFLX), Consumer Discretionary (NKE), Financials (SPG), Consumer Staples (WMT),
and Energy (XOM). A comprehensive list of associated stock tickers can be found in Appendix C. To enhance visual representation,
the dynamic conditional partial correlations have been scaled by a factor of 10.
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Figure B5: Dynamic Conditional (Partial) Correlations: Blue Chips Stocks from S&P 500 3

Notes: The figure describes the dynamic conditional correlations and dynamic conditional partial correlations among stock price
volatilities for sectors characterized by a high degree of unconditional dependence. Stock ticker symbols corresponding to each
sector are delineated as follows: Materials (FCX), Health Care (ISRG), Industrials (MMM), Information Technology (MSFT),
Utilities (NEE), Communication Services (NFLX), Consumer Discretionary (NKE), Financials (SPG), Consumer Staples (WMT),
and Energy (XOM). A comprehensive list of associated stock tickers can be found in Appendix C. To enhance visual representation,
the dynamic conditional partial correlations have been scaled by a factor of 10.
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Figure B6: Dynamic Conditional (Partial) Correlations: Blue Chips Stocks from S&P 500 4

Notes: The figure describes the dynamic conditional correlations and dynamic conditional partial correlations among stock price
volatilities for sectors characterized by a high degree of unconditional dependence. Stock ticker symbols corresponding to each
sector are delineated as follows: Materials (FCX), Health Care (ISRG), Industrials (MMM), Information Technology (MSFT),
Utilities (NEE), Communication Services (NFLX), Consumer Discretionary (NKE), Financials (SPG), Consumer Staples (WMT),
and Energy (XOM). A comprehensive list of associated stock tickers can be found in Appendix C. To enhance visual representation,
the dynamic conditional partial correlations have been scaled by a factor of 10.
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Figure B7: Dynamic Conditional (Partial) Correlations: Blue Chips Stocks from S&P 500 5

Notes: The figure describes the dynamic conditional correlations and dynamic conditional partial correlations among stock price
volatilities for sectors characterized by a high degree of unconditional dependence. Stock ticker symbols corresponding to each
sector are delineated as follows: Materials (FCX), Health Care (ISRG), Industrials (MMM), Information Technology (MSFT),
Utilities (NEE), Communication Services (NFLX), Consumer Discretionary (NKE), Financials (SPG), Consumer Staples (WMT),
and Energy (XOM). A comprehensive list of associated stock tickers can be found in Appendix C. To enhance visual representation,
the dynamic conditional partial correlations have been scaled by a factor of 10.
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